Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A better understanding of gene flow

23.06.2005


Scientists will today explain to a meeting in London how their research has greatly improved our understanding of the flow of genetic material between organisms in the environment. Outcomes from the Gene Flow in Plants and Microorganisms Initiative, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Natural Environment Research Council (NERC), will be valuable in informing the future of both conventional and GM crops.

The outcomes of the initiative include the finding that separation distances of around 100m between GM and conventional crops can meet most impurity thresholds and restrict the transfer of genetic material into the environment. Researchers also found that gene transfer from GM organisms to soil bacteria is vanishingly small and highly unlikely.

However, scientists examining the likelihood of gene transfer from conventionally-bred commercial oil seed rape to its waterside wild relative, Bargeman’s Cabbage, Brassica rapa, found that transfer was not rare. In fact, they estimated that around 32,000 oil seed/B. rapa hybrids are produced in the UK every year.



Another project explored how the activity of genes transferred into plants could be made more predictable. The researchers found that introducing traits by GM methods can have less impact on overall gene expression than conventional plant breeding.

The findings are the result of a five-year £4.5M initiative to increase knowledge of what happens when new or ‘foreign’ genes are inserted into an organism’s genome, what mechanisms control the insertion, whether inserted genetic material can transfer between organisms, and if so what the consequences of gene flow would be.

Professor Phil Dale, Chair of the Initiative Steering Group, said, “The findings of the Gene Flow Initiative are not just important in informing policy on GM crops but for conventional farming and plant breeding as well. Before research under this initiative began we had very little idea of how genetic material flowed in the environment but we are now much better placed for the future.”

Scientists involved in the initiative will be explaining the research and its outcomes at a Media Briefing.

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk
http://www.nerc.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>