Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers investigate ’whole farm’ approach to reduce dairy pollution

04.03.2005


A new agricultural research project is looking for ways to prevent phosphorus in manure from running off into the Bosque and Leon Watersheds. The challenge is to do so without sinking the region’s dairy industry.

Funded by $800,000 in grant monies from the U.S. Department of Agriculture and the Environmental Protection Agency, the project pools the efforts of experts from the Texas Agricultural Experiment Station, Texas Cooperative Extension and Tarleton State University.
At stake is not only preserving water quality in Central Texas, but reinforcing an industry crucial to the central Texas economy, said Dr. Barry Lambert. "The city of Waco, downstream from the dairies on the Bosque River watershed, has placed much of the blame for (Lake) Waco water quality issues on the dairy industry in orth-Central Texas," said Lambert, dairy nutritionist with a joint appointment with the Experiment Station and Tarleton State. The issue centers not on the manure itself, but primarily concerns phosphorus, a component of manure.


The average dairy cow excretes about 40 pounds of phosphorus per year as manure. Phosphorus, when in the right proportion to other compounds such as nitrogen and potassium, is an essential crop nutrient. Dairy farms typically spread the manure, either composted or as a slurry from catch lagoons, on crops as fertilizer.

The typical crop is some sort of forage, which uses 1 pound of phosphorus for every 4 pounds of nitrogen. The forage is a method of recycling manure, and if the proportions of phosphorus to nitrogen were correct, it would be an efficient, environmentally friendly system. "The majority of phosphorus leaves the dairy farm as either milk or manure," Lambert said. "Phosphorus is an essential nutrient for humans, so the milk part is good."

But dairy manure is high in phosphorus, having about 1 pound of phosphorus to every 2 pounds of nitrogen. It’s this leftover phosphorus, the part that crops don’t use, that is creating the problem, Lambert said.

Some of the extra phosphorus can be bound up

  • scientists say "sequestered"
  • in Central Texas soils. But some of the phosphorus in dairy manure is water-soluble, so what isn’t sequestered is at risk of being washed off into streams and rivers by heavy rains. Once it reaches lakes and reservoirs, phosphorus itself never reaches toxic levels. At elevated levels, however, it can result in rapid algae growth. Runaway algae growth can result in fish kills through oxygen depletion and the production of phytotoxins.

In light of these facts, the city of Waco, which gets most of its drinking water from the Bosque River, filed suit against 14 Central Texas dairies in April 2004, Lambert said.

In Central Texas, phosphorus pollution has been a controversial issue, for dairies are not the only source of phosphorus run-off, Lambert said.

Natural decay of any organic material or other agricultural activities can also contribute to phosphorus run-off. It’s an accepted fact that home lawn and garden fertilizers, which are typically over-applied, are also a significant source of phosphorus run-off, he said.

Muddying the waters further, many of the federal and state environmental regulations are based on soils, climate and forage cropping systems that have little in common with those in Central Texas, said Dr. James Pierre Muir, Experiment Station forage research physiologist. "If you add assumption on top of supposition, you wind up with legislation and litigation based on very little data," said Muir, who is also a member of the research project. And Central Texas dairies are caught in between the legislation and suits, he said. Muir, Lambert and the rest of the research project team believe the answer lies in the way small changes in dairy farm management can result in wholesale reduction of phosphorus run-off.

Over the next three years, they will examine:

  • Improving phosphorus recycling on farm through less traditional forage crops;
  • Increasing phosphorus sequestering in soils;
  • Trying different crops on the streamside buffer zones already in use by dairies;
  • Using soldier fly larvae to recycle manure (See http://agnews.tamu.edu/dailynews/stories/ENTO/Nov2904a.htm);
  • Correcting cropland that has already phosphorus sequestration limits through the use of year-around forage cropping; and
  • Adjusting dairy feed mixtures so cows excrete less phosphorus in their manure.

Many of these systems have been tried in part, Muir said, but what makes this project unique is the "whole-farm" approach. Rather than just looking at how a single change affects phosphorus buildup and runoff, researchers will investigate how the various strategies reinforce one another.

"It’s really a matter of fine-tuning a system that isn’t necessarily broken but could run better," Muir said. "We have also included the dairymen as full partners in the design, implementation and interpretation of research and subsequent outreach. It is, after all, their dairies."

Along the way, the team will collect data that can be used to write regulations that reflect the "real world," Muir said. Another factor that makes the research project different from those that came before is this real-world nature, Lambert said.

"We’re doing this work on real, operating dairies. It’s not something confined to a laboratory," Lambert said. "(We will be) tracking phosphorus from the time it enters the farm until it leaves it."

Robert Burns | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>