Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poison digs its own grave

17.12.2004


Botrytis cinerea (grey mould) has a large arsenal of molecular pumps at its disposal to protect it against toxic substances such as antibiotics, plant defence compounds and fungicides. Dutch researcher Henk-jan Schoonbeek saw how the fungus started to pump out certain toxic substances within just 15 minutes.



Botrytis cinerea causes rot in fruit and vegetables and is therefore a major problem for growers in horticulture and viniculture. Unfortunately, it is scarcely affected by natural or synthetic protective compounds, as it uses minute protein pumps (so-called ABC transporters) to pump these back out again.

When the fungus comes into contact with toxic substances, these initially enter it unhindered. About 15 minutes later, an emergency mechanism starts up and the fungus secretes the toxic substances so that their concentration in the fungus falls below the lethal dose.


Schoonbeek studied the genes involved in the secretion of toxic substances by ABC transporters. He discovered that the activity of the pumps was partly controlled by the toxic substances. Upon entering the fungus, these stimulate the fungal DNA to produce certain proteins, which then immediately pump these substances out of the fungus.

The researcher established that this mechanism in B. cinerea is comparable to multiple drug resistance in humans. Multiple drug resistance is when cells that have been treated with one type of medicine, become resistant to a completely unrelated group of medicines. Transport proteins also play an important role in multiple drug resistance.

One of these ABC transporters is the protein BcatrB. This protein is involved in defending the fungus against many different toxic substances. For example, it is active against resveratrol, a plant defence compound from grapevines. Therefore the fungus can easily break through the defence lines of grape plants. Although antibiotic-producing bacteria are used to protect plants successfully against other pathogens, the phenazine antibiotics they contain cannot stop B. cinerea. This is because they also activate the production of the BcatrB protein and are therefore immediately pumped back out again. This new information is helpful in developing new strategies to control grey mould diseases.

The research was funded by the Netherlands Organisation for Scientific Research.

Dr Henk-jan Schoonbeek | alfa
Further information:
http://www.nwo.nl/

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>