Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Farmers don’t need a new superstar toxin to fight bugs

26.10.2004


A new Michael Jordan of toxins isn’t required to increase crop protection against bugs as long as the right genes are strategically placed to take their shots at destructive insects, researchers report.

Plants modified with protectant genes designed to kill resistant insects can extend the usefulness of currently used pest-control methods and delay the development of pesticide-resistant bugs, according to Purdue University scientists and their collaborators from the University of Wisconsin-Madison, Monsanto Co., the University of Illinois and the University of California, Davis. The researchers’ findings appear in this month’s issue of the Journal of Theoretical Biology. "We always thought that it would take a Michael Jordan of toxins - a superstar of toxins to effectively halt insect resistance to the current generation of insecticides," said Barry Pittendrigh, a Purdue associate professor of entomology and lead author of the study. "We found that moderately effective genetically engineered protectants used in plants in the buffer zone around the main crops can play a major role in insect control, and they should be easier to identify than highly effective protectants. "You don’t find a superstar very often, but it may not be difficult to find good players, or worthwhile insect-control agents."

Farmers who use bioengineered crop protectants also use a buffer, or refuge, around the outside of fields that contains plants lacking the high-toxicity genetic modification in the main field that kills most insects. The refuge, usually about 20 percent of the acreage planted, delays development of insects resistant to the main-field, high-toxicity protectants, but some individuals in the destructive insect group have genes that allow them to survive.



Using a computer model, the scientists determined that within a refuge, one could add a moderate plant protectant, or journeyman player, that kills 30 percent to 50 percent of insects that carry a rare resistance gene. If developed to a practical level, equipping the refuge with a moderately toxic protectant gene could dramatically delay development of new resistant insects that could attack the main crop, Pittendrigh said. "When we first started this project, we didn’t believe that you could use a genetic toxin that was effective in killing a moderate number of resistant insects, so this finding was very surprising," he said.

Over time, insects exposed to specific plant protectants undergo genetic changes so the highly effective genetic toxins no longer affect them. This latest research suggests it may be easier than previously thought to find commercially viable protectants to control these resistant insects because moderate-toxicity protectant genes are much easier to discover than high-toxicity superstars. The specific problem the researchers attacked is that insects susceptible to the high-toxicity genetic protectant used in the main field crops can survive, breed and reproduce in the refuge. Farmers, who now use crops with high-toxicity protectant genes to fight bugs, don’t use those plants in the refuge. So the crops in the border area are susceptible to insect attack.

When susceptible insects from the refuge breed with each other or with resistant insects, the high-toxicity genetically protected plants in the main fields still kill most of the bugs’ offspring.

A moderately effective genetic modification inserted into crops specifically to kill resistant insects that survive in the refuge can lengthen the usefulness of the primary genetic protectant used in the main field, Pittendrigh said. These specially designed refuge-area protectants create a phenomenon called negative cross-resistance because the moderate-toxicity protectant kills the insects that are resistant to the primary protectant. "If we could discover and use moderately effective negative cross-resistance compounds in a refuge, it would work just like an oil filter in a car," Pittendrigh said. "Like the oil filter removing impurities, the refuge with negative cross-resistance protectants could eliminate many of the genetically resistant insects that otherwise might invade the main crop. "We used mathematical models to test this concept, and we were very surprised by the findings. Although these results are exciting, we are well aware that a number of issues must be addressed before this approach can become practically applicable."

The other researchers are Larry Murdock, Purdue entomology professor; Patrick Gaffney, formerly of the University of Wisconsin-Madison; Joseph Huesing, Monsanto Co. research entomologist; David Onstad, University of Illinois Department of Natural Resources and Environmental Sciences; and Richard Roush, University of California, Davis.

The Purdue Department of Entomology provided the funding for this research.

Susan Steeves | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>