Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heavy Metal Rocks Plant Cells too

22.09.2004


Heavy metals can trigger widely varying stress reactions in plants. A team at the Campus Vienna Biocenter was now able to provide evidence for this in a research funded by the Austrian Science Fund (FWF). The results, now awaiting publication, are an important basis to comprehend how plants cope with an increase in heavy metal concentrations in the soil - and how these abilities can be profitably utilised.


Plants are capable of a variegated spectrum of stress reactions. Prof. Heribert Hirt and his team at Campus Vienna Biocenter have now proved that plants can distinguish even between different heavy metals.



Adverse environmental conditions can cause enormous stress in plants. As sedentary beings they are at the absolute mercy of these conditions. Nevertheless, in order to grow and flourish, they have developed a comprehensive series of stress reactions. The recent work by the team of Prof. Heribert Hirt and Dr. Claudia Jonak at the Campus Vienna Biocenter prove how subtly plants can differentiate the various kinds of stress.

Plants easily distinguish heavy metal


Heavy metals can be found naturally in the soil in small concentrations, and thereby constitute no difficulties for plants. But high concentrations have a toxic effect and can occur through environmental loads. Prof. Hirt and his colleagues have now compared for the first time the exact reactions of plants to high concentrations of various heavy metals. Prof. Hirt explains, "Our initial measurements already showed that the heavy metals trigger the activation of four different enzymes, which play a very central role in the stress reactions of plants. These enzymes are the so-called ‘MAPKs’." MAPKs is the abbreviation for "mitogen-activated protein kinases", a class of molecular switches which are of great importance for the control of gene expression.

The team made an interesting discovery when the activities of the enzymes were analysed in detail. It found out that different heavy metals activate the same four enzymes, but at varying speeds. The activation through copper took place very fast, but through cadmium at a comparatively much slower rate. "The activation of individual MAPKs through copper already took place after 5-10 minutes, while comparable effects through cadmium occurred only 20 minutes later. This difference is not so crucial for the ability of the plant to cope with the stress, but it points to the fact that different types of stress reactions take place,” Prof. Hirt elaborates on the results. Even though the cause for this time difference is still unknown, Prof. Hirt has already developed a hypothesis, which he will put to test in future projects.

Oxygen radicals create stress

The basis for Prof. Hirt’s hypothesis is the fact that copper as well as cadmium lead to the production of destructive oxygen radicals in the plant. These radicals can directly activate the MAPKs unlike the heavy metals. Prof. Hirt adds, "Too much copper causes the direct production of oxygen radicals, while cadmium causes their production only indirectly. The reason for this difference is that copper is involved in various vital processes in the plant cell. Oxygen radicals develop only if there is too much copper. Contrary to that, cadmium is not part of any metabolism known to us. Its harmfulness is based on the replacement of other metals participating in the metabolism, but without assuming their function. Even though this eventually also leads to the production of oxygen radicals, this indirect process simply takes more time." But Prof. Hirt also notes that the activation of MAPKs stimulated by heavy metals could be also caused by substances other than oxygen radicals. Additional experiments will clarify these processes in detail.

A better understanding of plant reactions to high concentrations of heavy metals can have a great significance for our environment in the medium-term. For instance, it may become possible to breed plants which have a better chance of survival on soil contaminated by heavy metals. However, the possibilities of the so-called phytoremediation are even more appealing – a technology in which plants are used to extract heavy metals from contaminated soil and thus slowly clean the earth.

Till C. Jelitto | alfa
Further information:
http://www.prd.at
http://www.fwf.ac.at/en/press/heavy_metals.html

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>