Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU research for cheaper, greener and quieter aircraft

22.06.2004


European-funded research projects to reduce aircraft noise and fuel consumption are now running at full speed. Included is one of Europe’s largest-ever noise-reduction research ventures, known as SILENCE(R). A consortium of 51 companies is testing new technologies to reduce aircraft noise by up to 6 decibels (dB) by 2008, with the EU contributing half the funding for SILENCE(R), with a total budget over €110 million. Other significant initiatives include FRIENDCOPTER, to reduce helicopter engine and rotor-blade noise; TANGO, to create lighter aircraft structures; EEFAE, to build aero-engines that reduce fuel consumption and emissions; and AWIATOR, to decrease aircraft structural weight, reduce noise and improve performance.

European Research Commissioner Philippe Busquin said: “Through EU funding and co-operation within the “Advisory Council for Aeronautics Research in Europe” (ACARE) technology platform, Europe’s key aircraft manufacturers, research institutes, universities and small-to-medium-sized enterprises (SMEs) are working together to create cheaper, cleaner and quieter aircraft. These projects will help minimise the environmental downside of increased air traffic, while also helping to maintain the competitiveness of the European aerospace industry.”

Technology helping to cut aircraft noise



Noise is now considered a serious health hazard, not just a nuisance, with a third of Europeans experiencing noise levels that disturb sleep. Current research programmes expect a reduction in noise (by 10dB) to halve jet noise within the next decade.

The four-year SILENCE(R) project is assessing noise reduction technologies based on cost, weight and performance. These tests include low-noise fans, novel intake liners, bypass and hot-stream liners, nozzle jet noise suppressers, active control techniques and airframe noise reduction technologies.

The FRIENDCOPTER project aims to provide engine and cabin noise reduction, low-noise flight procedures, noise-absorbing engine inlets, methods to identify cabin noise leaks, control technology to reduce rotor noise, vibration and fuel consumption and a model rotor for testing in a wind tunnel at Mach speed.

Lighter and cleaner aircraft set to take off

The TANGO project aims to achieve a 20% reduction in weight and cost in current aircraft structures and manufacturing processes to improve competitiveness. Four aircraft sections (including a lateral wing box, centre wing box, fuselage section and advanced metallic fuselage section) are being tested to help improve fuel efficiency and reduce emissions.

The five-year EEFAE project, involving all major European aero-engine companies and a number of universities, will build and test aero-engine technologies to reduce fuel consumption, emissions and costs and also improve reliability. It will test technologies for use in new three-shaft engines, a geared turbofan engine and inter-cooled recuperative aero engine, to be available for use from 2008 to 2015.

By integrating advanced technologies into new fixed-wing configurations, the AWIATOR project expects to improve aircraft efficiency by improving performance and making them lighter.

It is estimated more than 500 researchers from all member states are working on these projects.

Fabio Fabbi | EU Commission
Further information:
http://europa.eu.int/comm/research/aeronautics/index_en.html

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>