Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’High-vigour’ wheat puts weeds in the shade

16.06.2004



CSIRO is breeding new ’high-vigour’ wheats so fast-growing they can out-compete weeds while maintaining high yields.

Weeds cost Australian farmers over $4 billion annually in chemical and mechanical control and yield losses.

"High-vigour wheats have the potential to provide significant economic savings and environmental benefits for Australian agriculture," says Dr Greg Rebetzke, CSIRO Plant Industry.



"In field trials where wheat crops have to compete with weeds, the high-vigour wheat yielded double the grain of current varieties."

The new wheats shade the soil surface, suppressing weeds and saving water by reducing soil evaporation.

They also have more robust root systems than current varieties, enabling them to starve weeds and access water and nutrients deep in the soil.

The high-vigour conventional breeding program follows a three-year study by CSIRO and the University of Adelaide that evaluated the competitiveness of over 200 wheat lines from Australia and around the world.

The study found that competitiveness in Australian wheat has been largely bred out over the last 100 years, as breeders focused on better grain quality and disease resistance.

"We measured a range of traits including wheat and weed seed yield, rate of leaf area development and the ability to suppress or tolerate weeds, selecting the most vigorous wheat lines for further breeding," says Dr Gurjeet Gill of the University of Adelaide.

"The program is now breeding the high-vigour traits into commercial wheat varieties for release to growers. Varieties are expected to be available in four to five years."

Further CSIRO research is aimed at understanding genetic control of early vigour and developing breeding strategies to improve the efficiency of selection.

More information:

Dr Greg Rebetzke, CSIRO Plant Industry, 02 6246 5153
Email: Greg.Rebetzke@csiro.au

Dr Gurjeet Gill, University of Adelaide, 08 8303 7744
Email: gurjeet.gill@adelaide.edu.au

Visit: www.pi.csiro.au/newsletter

Media assistance:
Tony Steeper, CSIRO Plant Industry, 02 6246 5323, mobile: 0417 032 131
Email: tony.steeper@csiro.au

Bill Stephens | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=PrHighvigour

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>