Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tests show biotech corn rules need revision

11.05.2004


A corn earworm (Helicoverpa zea) caterpillar damages corn by devouring kernels and spreading green mold (Aspergillus flavus).
Photo credit: Texas A&M University


Biotech corn carrying a gene that confers protection from insects can pollinate corn plants as far as 100 feet (31 meters) away, reports a pair of researchers.

The gene, known as Bt, codes for a toxin that kills corn-munching caterpillars, including European corn borer and corn earworm.

The findings suggest measures are needed to reduce pollen spread from Bt corn to corn fields that should be Bt-free, according to the researchers.



The discovery is important because planting non-Bt corn, which is susceptible to insect attack, near Bt corn delays pest resistance to the Bt toxin. Such fields of non-Bt corn are called refuges.

However, this research indicates a need to revise the current Environmental Protection Agency guidelines for interspersing non-Bt corn with Bt, or transgenic, corn. The gene is from the bacterium called Bt--short for Bacillus thuringiensis.

"It’s the first documentation of gene flow from a transgenic crop into a refuge," said Bruce E. Tabashnik, head of the entomology department at the University of Arizona in Tucson and co-author on the research paper. "This will almost certainly cause a revision of some of the regulations," adding, "I think it’s a problem that once observed, recognized and accepted can be readily overcome."

Tabashnik, who works on the evolution of resistance in insects, was involved in devising the refuge guidelines. Using such biotech crops can reduce the need for chemical insecticides, he said.

"If Bt crops were grown wall-to-wall, everyone would expect resistance in insects to evolve overnight," he said. "The EPA rules say that if you grow Bt corn, you must plant a refuge of non-Bt corn for at least 20 percent of your crop."

Caterpillars that can survive on Bt corn are rare at first, and only a few resistant adult moths emerge from Bt corn fields. But refuges of non-Bt corn produce oodles of susceptible moths. The idea is that the uncommon resistant moths will mate with the more abundant susceptible moths. Their hybrid progeny would be killed by feeding on Bt corn. Thus, Bt resistance would not increase quickly.

Non-Bt corn refuges must be close to Bt corn so Bt-resistant moths will almost certainly mate with only with Bt-susceptible moths from refuges.

Until now, researchers didn’t consider that the Bt and non-Bt corn plants were also close enough to mate, potentially reducing the amount of non-Bt corn in the refuge.

The research article, "Contamination of refuges by Bacillus thuringiensis toxin genes from transgenic maize," will be published the week of May 10 in the online early edition of the Proceedings of the National Academy of Sciences. First author on the paper is Charles F. Chilcutt of Texas A&M University’s Texas Agricultural Research & Extension Center in Corpus Christi. Research support was provided by the University of Arizona and Texas A&M University’s Texas Agricultural Research & Extension Center.

Chilcutt questioned whether pollen from Bt corn moved into refuges when he noticed that ears of white non-Bt corn had some yellow kernels. Yellow kernels meant the plants had been pollinated by yellow, not white, corn. The plot of white corn had been planted near yellow Bt corn.

So he tested those yellow kernels for the Bt toxin and found it in high levels.

To see how far Bt corn pollen could spread, he planted eight rows of Bt corn next to 36 rows of non-Bt corn. The rows were planted 38 inches apart. At the end of the growing season, he took ears from the non-Bt corn and tested them for Bt toxin.

In the first few rows of corn that was supposed to be Bt-free, the ears had almost half as much Bt as the Bt corn. Although corn in more distant rows had less Bt, there was detectable Bt in the ears of corn planted 32 rows away from the plot of Bt corn.

Chilcutt said, "There’s very good chance that if any grower is growing four rows of Bt corn and four rows of non-Bt corn -- 4-4-4-4 -- essentially all the refuge plants could be contaminated."

Current regulations allow such spacing between Bt and non-Bt corn.

He added, "It could increase the speed with which insect populations become resistant to the toxin."

Tabashnik said, "The possibility of toxin production in the refuge plants is something that needs to be incorporated into the science and the regulations."

Because corn is wind-pollinated, refuges could be planted upwind of Bt corn, suggests Tabashnik. Another possibility would be blocking cross-pollination by planting a variety of Bt corn that produces pollen when the non-Bt corn is not receptive.

Tabashnik said, "The problem will take more research to be fully understood, but it’s not catastrophic and can be overcome with relatively minor refinements."

Bruce Tabashnik | University of Arizona
Further information:
http://www.arizona.edu/

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>