Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers string together players in pesticide resistance orchestra

05.05.2004


A Purdue University research team has found a set of genes that may orchestrate insects’ ability to fight the effects of pesticides.


Tiny fruit flies are the subjects of Purdue University entomology researcher Barry Pittendrigh’s efforts to discover how insects neutralize the pesticides designed to kill them. He believes that a series of genes are players that orchestrate the biochemical processes involved in pesticide resistance. His study was published in the current issue of Proceedings of the National Academy of Sciences. (Purdue Agricultural Communication photo/Tom Campbell)



"Our study suggests that more than one gene may be involved in making insects resistant to certain pesticides," said Barry Pittendrigh, associate professor of entomology. "Using a music analogy, metabolic resistance may not be a single individual playing a single instrument. It’s more likely a symphony with numerous instruments playing a role in producing the music."

The ultimate aim of the research is to develop methods to prevent insect damage to plants, he said. Results of the initial study are published in the Tuesday (May 4) issue of Proceedings of the National Academy of Sciences.


The scientists looked at approximately 14,000 genes from both metabolically resistant and non-resistant wild-type fruit flies. They identified dozens of genes that were different in resistant fly lines compared to non-resistant wild-type flies, Pittendrigh said. This indicates that a number of genes may be part of the metabolic resistance-causing orchestra, he said.

In metabolic resistance, an organism, in this case an insect, breaks down a toxin that normally might be fatal. Organisms metabolize the toxin or turn it into something that disables the harmful molecules, and then dispose of it.

"We have identified a series of genes that are interesting because the high abundance, or expression, of their genetic traits in resistant flies signifies they may be part of the orchestra that leads to resistance," Pittendrigh said. "But more research must be conducted before we claim whether any of these genes actually cause resistance.

"Another interesting finding that emerged from our study is that a series of genes are common to both resistant insects found in the field and those used in the laboratory. Hypothetically, this could lead to common genes that consistently have the same resistance traits across fly lines or even potentially across insect species."

If further research proves this to be true, these genes might be tools for controlling many different insects, he said.

Joao Pedra, an entomology doctoral student and lead author of the paper, said data from the study suggest that more than one detoxification gene is over-expressed in resistant insects.

"Different resistant fly lines also may have different levels of expression of these genes," Pedra said. "This may affect how resistant they are to a pesticide."

Knowing genes involved in resistance and their relationship to each other would provide scientists with information needed to develop ways to halt insects’ detoxification of chemicals designed to kill them.

"It would be great if we would ultimately identify a ’conductor’ gene that is critical for directing the biochemical processes that allow insects to detoxify pesticides," Pittendrigh said. "A gene or genes that may be critical for resistance, in turn, may become targets, enabling us to develop compounds to control pesticide-resistant insects."

The scientists already have found that some of the genes they’re studying are involved in the process of metabolizing some pesticides, rendering them ineffective.

"We have a relatively firm grasp of target insensitivity - when a toxin will no longer bind with a molecule in an insect so the chemical no longer kills the insect," he said. "But to date, we still don’t understand many aspects of metabolic pesticide resistance.

"Finding genes involved in the fundamental resistance process that also are found across insect species may provide for better resistance monitoring or even resistance management strategies."

One type of bug, the tarnished plant bug, includes two species native to the United States that cause moderate to severe damage to fruits, vegetables, tree seedlings, cotton and alfalfa. The total annual losses and control costs attributed to this one insect are $2.1 billion to $3.5 billion, according to the U.S. Department of Agriculture’s Agricultural Research Service.

Pittendrigh’s team used a recently developed technology to simultaneously look at all the genes in a common research animal, the fruit fly (Drosophila). The technology, high-density micro-array analysis, makes it possible to scan the insect genome and record differences between resistant and susceptible insects.

"Understanding the gene or genes that conduct the metabolic resistance orchestra would give us a way to soften the crescendo of insect damage," Pittendrigh said.

The other researchers involved with this study are: Lauren McIntyre, associate professor in the Department of Agronomy and a member of the Purdue Genomics Center Micro-Array Core Facility, and Michael Scharf, an entomology research specialist, director of the Industrial Affiliates Program and a member of the Purdue Center for Urban and Industrial Pest Management. Pittendrigh and Pedra also are members of the Purdue Molecular Plant Resistance and Nematode Team.

The National Institutes of Health, U.S. Department of Agriculture, Purdue Research Foundation and Department of Entomology provided funds for this study.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu
Sources: Barry Pittendrigh, (765) 494-7730, pittendrigh@purdue.edu
Joao Pedra, (765) 494-6313, jpedra1@purdue.edu
Ag Communications: (765) 494-2722; Beth Forbes, forbes@purdue.edu
Agriculture News Page

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/UNS/html4ever/2004/040504.Pittendrigh.orch.html

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>