Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers string together players in pesticide resistance orchestra

05.05.2004


A Purdue University research team has found a set of genes that may orchestrate insects’ ability to fight the effects of pesticides.


Tiny fruit flies are the subjects of Purdue University entomology researcher Barry Pittendrigh’s efforts to discover how insects neutralize the pesticides designed to kill them. He believes that a series of genes are players that orchestrate the biochemical processes involved in pesticide resistance. His study was published in the current issue of Proceedings of the National Academy of Sciences. (Purdue Agricultural Communication photo/Tom Campbell)



"Our study suggests that more than one gene may be involved in making insects resistant to certain pesticides," said Barry Pittendrigh, associate professor of entomology. "Using a music analogy, metabolic resistance may not be a single individual playing a single instrument. It’s more likely a symphony with numerous instruments playing a role in producing the music."

The ultimate aim of the research is to develop methods to prevent insect damage to plants, he said. Results of the initial study are published in the Tuesday (May 4) issue of Proceedings of the National Academy of Sciences.


The scientists looked at approximately 14,000 genes from both metabolically resistant and non-resistant wild-type fruit flies. They identified dozens of genes that were different in resistant fly lines compared to non-resistant wild-type flies, Pittendrigh said. This indicates that a number of genes may be part of the metabolic resistance-causing orchestra, he said.

In metabolic resistance, an organism, in this case an insect, breaks down a toxin that normally might be fatal. Organisms metabolize the toxin or turn it into something that disables the harmful molecules, and then dispose of it.

"We have identified a series of genes that are interesting because the high abundance, or expression, of their genetic traits in resistant flies signifies they may be part of the orchestra that leads to resistance," Pittendrigh said. "But more research must be conducted before we claim whether any of these genes actually cause resistance.

"Another interesting finding that emerged from our study is that a series of genes are common to both resistant insects found in the field and those used in the laboratory. Hypothetically, this could lead to common genes that consistently have the same resistance traits across fly lines or even potentially across insect species."

If further research proves this to be true, these genes might be tools for controlling many different insects, he said.

Joao Pedra, an entomology doctoral student and lead author of the paper, said data from the study suggest that more than one detoxification gene is over-expressed in resistant insects.

"Different resistant fly lines also may have different levels of expression of these genes," Pedra said. "This may affect how resistant they are to a pesticide."

Knowing genes involved in resistance and their relationship to each other would provide scientists with information needed to develop ways to halt insects’ detoxification of chemicals designed to kill them.

"It would be great if we would ultimately identify a ’conductor’ gene that is critical for directing the biochemical processes that allow insects to detoxify pesticides," Pittendrigh said. "A gene or genes that may be critical for resistance, in turn, may become targets, enabling us to develop compounds to control pesticide-resistant insects."

The scientists already have found that some of the genes they’re studying are involved in the process of metabolizing some pesticides, rendering them ineffective.

"We have a relatively firm grasp of target insensitivity - when a toxin will no longer bind with a molecule in an insect so the chemical no longer kills the insect," he said. "But to date, we still don’t understand many aspects of metabolic pesticide resistance.

"Finding genes involved in the fundamental resistance process that also are found across insect species may provide for better resistance monitoring or even resistance management strategies."

One type of bug, the tarnished plant bug, includes two species native to the United States that cause moderate to severe damage to fruits, vegetables, tree seedlings, cotton and alfalfa. The total annual losses and control costs attributed to this one insect are $2.1 billion to $3.5 billion, according to the U.S. Department of Agriculture’s Agricultural Research Service.

Pittendrigh’s team used a recently developed technology to simultaneously look at all the genes in a common research animal, the fruit fly (Drosophila). The technology, high-density micro-array analysis, makes it possible to scan the insect genome and record differences between resistant and susceptible insects.

"Understanding the gene or genes that conduct the metabolic resistance orchestra would give us a way to soften the crescendo of insect damage," Pittendrigh said.

The other researchers involved with this study are: Lauren McIntyre, associate professor in the Department of Agronomy and a member of the Purdue Genomics Center Micro-Array Core Facility, and Michael Scharf, an entomology research specialist, director of the Industrial Affiliates Program and a member of the Purdue Center for Urban and Industrial Pest Management. Pittendrigh and Pedra also are members of the Purdue Molecular Plant Resistance and Nematode Team.

The National Institutes of Health, U.S. Department of Agriculture, Purdue Research Foundation and Department of Entomology provided funds for this study.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu
Sources: Barry Pittendrigh, (765) 494-7730, pittendrigh@purdue.edu
Joao Pedra, (765) 494-6313, jpedra1@purdue.edu
Ag Communications: (765) 494-2722; Beth Forbes, forbes@purdue.edu
Agriculture News Page

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/UNS/html4ever/2004/040504.Pittendrigh.orch.html

More articles from Agricultural and Forestry Science:

nachricht New parsley virus discovered by Braunschweig researchers
17.05.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Franco-German research initiative on low-pesticide agriculture in Europe
16.05.2019 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>