Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A cushion of air trapped under the rice fields of Senegal

30.04.2004


Irrigation by surge flooding, a technique used essentially in rice cropping, involves the input of large volumes of water. In some regions, this water does not infiltrate to any depth. Poor infiltration like this can cause severe loss in soil quality and harm crops. Recent investigations on such a situation in a rice field in the River Senegal valley, involving water budget monitoring for 100 days, the length of a cropping season, have confirmed a lack of water infiltration below 40 cm depth. Scientists from the IRD and Pernambuco Federal University of Brazil jointly conducted the project. Mathematical models revealed that air, trapped in dry soil owing to the clay content, is confined and compressed between the wetting front which progresses from the surface and the water table below. The resulting cushion of air creates a blockage, slowing down then stopping the water’s filtration deeper into the soil. This investigation offers new lines of approach that might explain intense salinization of the soil that occurs in some regions of the world.



Rice cultivation uses great volumes of water, especially where the submerged-field method involving surge flooding irrigation is practised. Maintenance of a layer of water on the soil surface throughout the cropping period usually favours its infiltration deeper down. However, it has been known for many years that in some regions water often does not reach deep into the soil. This unusual feature, poorly understood up to now, becomes a problem in rice fields in arid areas because it can have harmful effects. Although from one point of view it conserves a mass of water, in that flow does not penetrate too deeply and remains entirely available for the rice to grow, it can lead to soil quality loss. Absence of infiltration lets mineral salts accumulate in the root zone, and an intense salinization sets in. That process can generate hydraulic stress which acts on the plants, limiting their growth or even killing them.

How can such a low rate of drainage be explained? An IRD team from research unit 67-ARIANE Les sols cultivés à fortes contraintes physico-chimiques des régions chaudes, working jointly with a Brazilian researcher (1), determined the water budget in rice farmers’ plots in the River Senegal valley. They employed mathematical models to define the water-flow events in the soil.


The rice fields, located on clayey soils, were situated above a water table lying at between 1.50 and 2 m depth. The research team quantified water input and output throughout the cropping period, about 100 days. Most of the water input to the plot was consumed by the plant and the average infiltration rate was extremely low (below 0.1 mm/day). In order to obtain a more precise water budget, measurements were made of the soil water tension and capillary pressure, the water content profiles and the water table depth. These measurements showed that the water brought in by irrigation hardly filters down at all beyond 40 cm depth below the surface. A zone exists between 40 and 50 cm depth which does not become saturated during the cropping season. Moreover, calculations of the infiltration flux confirming the measured values at plot level indicated that the water table was essentially fed by leakage from the bed of the irrigation canal and not by infiltration of water from the s! urface layer.

These results prompted the research team to suggest the presence of an isolating body of air under the rice fields. This hypothesis was rapidly confirmed using digital models. Up to now, most soil water transfer models, such as Hydrus, considered that air escaped freely and did not affect the water infiltration. This theory, valid for many situations in the field, proved not to be so in the case under investigation. A model taking the presence of air into account showed the entrapment of air contained in the soil between two wet fronts: the wetting front of water infiltrating from above and the water table deeper down. This air under compression appears to inhibit downward penetration of water in that the air has to leave the soil pores if the water is to enter and take its place.

The great quantities of water pushed into the rice fields are therefore almost completely consumed by the crop plants. The lack of drainage at depth means that there no leaching occurs and salts are not diluted. Air entrapment is probably a feature common to all irrigated rice-growing areas on clayey soils throughout the world. This phenomenon could explain the extensive salinization affecting the North-East Thailand rice fields. Investigations are soon to be conducted there to quantify the influence of air entrapment on water budgets and salt levels. Eventually, cultivation practices that can overcome poor drainage and salt accumulation could be developed.



(1) The partners involved in this research work carried out in Senegal belong to the Federal University of Pernambuco in Brazil (A.C.D. Antonino of the Department of Nuclear Energy), and to IRD (P. Boivin, C. Hammecker and J.L. Maeght from research unit UR 67)


FOR FURTHER INFORMATION

Contact: Claude Hammecker – IRD UR 067 " Les sols cultivés à fortes contraintes physico-chimiques des régions chaudes " - 300 avenue Emile Jeanbreau, 34095 Montpellier cedex ? France. Tel.: +33 (0) 4 67 14 90 28. Fax.: +33 (0) 4 67 14 90 68. Email: Claude.Hammecker@msem.univ-montp2.fr

Contact IRD Communication: Bénédicte Robert (press officer), Tel.: +33 (0)1 48 03 75 19, Email:presse@paris.ird.fr

Reference:
C. Hammecker, A.C.D. Antonino, J.L. Maeght, P. Boivin, 2003 - Experimental and numerical study of water flow in soil under irrigation in northern Senegal: evidence of entrapment, European journal of soil science, vol. 54, n°3, pages 491-503 (13).

To obtain illustrations concerning this research
Contact Indigo Base, IRD picture library, Claire Lissalde or Danièle Cavanna, Tel.: +33 (0)1 48 03 78 99, Email: indigo@paris.ird.fr

Bénédicte Robert | IRD
Further information:
http://www.ird.fr/us/actualites/fiches/2004/199.htm

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>