Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mexican farmers effectively cultivate phenotypic diversity in maize

30.04.2004


Erosion of genetic diversity of crop plants has for several decades been making it necessary to develop initiatives for protecting these plant resources. One strategy is in-situ conservation of crop plants. The model currently advanced involves maintaining the varieties to be conserved isolated in reserves, protected from entry of other varieties from elsewhere and cultivated according to ancestral farming practices. Researchers from the IRD and the CIMMYT of Mexico (1) used work previously conducted in Mexico on maize varieties, or landraces, to devise a different, dynamic, model judged more compatible with agricultural development and closer to the real conditions in which these plants diversified under the constant action of farmers (2). Insofar as local landraces are still grown as crops on sufficiently large areas of land, the introduction of others from outside, favouring a certain rate of gene flow, would in fact be a source of diversity rather than a factor of genetic erosion.



Mexico, the cradle of maize cultivation, is where this member of the Graminae family, a descendent of a local wild grass, teosinte, was domesticated and phenotypically diversified by human action, at least 6 000 years B.P. An in-situ conservation programme jointly run by CIMMYT, INIFAP (Mexican National Institute of Research in Forestry and Agriculture and Livestock Breeding) and the IRD, conducted in the central valleys of Oaxaca, enabled the research team to characterize the genetic structure of the different populations of local maize landraces and measured the impact of farming practices on this diversity. They focused on two types of diversity: phenotypic (concerning the morphological characters of the plants) and the genetic diversity (observed using genetic markers).

Study of the populations of maize landraces cultivated in six villages of this central region of Mexico has revealed that the morphological and agronomic characters in the field, such as ear size, kernel colour, or flowering period, vary depending on the farmer. At genome scale, genetic markers have shown strong homogeneity between the maize populations within the same village and, more surprisingly, between distant villages. This means that the local varieties possess a common genetic base. The diversity observed in characters of direct pertinence to farmers would consequently be the result of the latter’s personal decisions on seed selection, which they make before each crop cycle.


This region’s farmers currently grow the maize according to ancestral practices, established over hundreds of years. The fields are sown from one crop cycle to another with the seeds of the ears from the previous harvest. However, from time to time farmers decide to exchange seed batches with other neighbouring farmers, situated more or less geographically distant, in order to run experimental crops from these seeds. Each farmer thus judges the value of these seeds according to their characteristics. Selection criteria are still a highly individual choice and depend on a number of factors. For instance taste, colour, and cooking quality characteristics come into consideration as culinary criteria, leaf characteristics as forage quality criteria.

This investigation has brought the first genetic proof that these cultivation practices, conducted on a small scale (village and region), are a key element in the evolution of maize and its diversity. In-situ conservation of so-called "farm" varieties of crop plants, following the example of maize, could therefore be perceived in terms not of isolation, but of dynamic means of genetic material flow between the different populations of the same region in which the farmers play a predominant role. They thus appear to cultivate maize population diversity. These populations appear as open genetic systems, maintaining the centres of diversity of this major food cereal. The research conducted in this context on the inter-population gene flow should lead to better assessment of the risks from a spread of genetically modified –transgenic-corn varieties that might possibly be introduced into Mexico among traditional local landraces. Such work could therefore help provide some answers for the public debate which for many years has been running on this issue (3).


###
Marie Guillaume - DIC

(1) This investigation involved jointly research unit UR 141 "Diversité et génomes des plantes cultivées" and the CIMMYT (International Centre for Maize and Wheat Improvement) located in Mexico City.
(2) See FAS N°32, February 1997.
(3) A symposium on this topic is being held by the Commission for Environmental Cooperation of North America, in Oaxaca, Mexico, 11 March 2004. See www.cec.org

An article has also appeared: M. R. Bellon and J. Berthaud, 2004 – Transgenic maize and the evolution of landrace diversity in Mexico: The importance of farmers’ behavior, Plant Physiology, 1st March 2004, 134 (3).

FOR FURTHER INFORMATION

Contacter: Julien Berthaud – IRD UR 141 – " Diversité et génomes des plantes cultivées ", 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5. Tel.:33-4-67-41-61-65. Email: Berthaud@ird.fr

Contacts IRD Communication: Marie Guillaume (editor), Tel.:33-1-48-03-76-07, Email: guillaum@paris.ird.fr ; Bénédicte Robert (press officer), Tel.: 33-1-48-03-75-19, Email:presse@paris.ird.fr

References :

G. Pressoir and J. Berthaud, 2004 – Patterns of population structure in maize landraces from the Central Valleys of Oaxaca in Mexico, Heredity, 92, 88 - 94 (01 February 2004)
G. Pressoir and J. Berthaud, 2004 – Population structure and strong divergent selection shape phenotypic diversification in Maize landraces, Heredity, 92, 95-101 (01 February 2004)
M. R. Bellon, J. Berthaud et al., 2003 - Participatory landrace selection for on farm conservation : an example from the Central Valleys of Oaxaca, Mexico, Genetic Resources and Crop Evolution, 50, 401-416

To obtain illustrations concerning this research
Contact Indigo Base, IRD picture library, Claire Lissalde or Danièle Cavanna, Tel.: 33-1-48-03-78-99, Email: indigo@paris.ird.fr

Bénédicte Robert | EurekAlert!
Further information:
http://www.ird.fr/fr/actualites/fiches/2004/fiche197.htm

More articles from Agricultural and Forestry Science:

nachricht New parsley virus discovered by Braunschweig researchers
17.05.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Franco-German research initiative on low-pesticide agriculture in Europe
16.05.2019 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>