Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping Tomatoes Cope With Stress May Be Good For Us

26.04.2004


Scientists at the John Innes Centre (JIC)and Institute of Food Research (IFR), Norwich, have today reported the discovery and use of a gene that may help protect plants and humans against disease. The gene (HQT) was identified in tomato and is responsible for producing an antioxidant called chlorogenic acid (CGA).

By increasing the activity of HQT, the scientists raised the levels of CGA in the tomato fruits and this helped protect them against attack from bacterial disease. CGA could also protect humans eating the tomatoes against degenerative, age-related diseases. This report is published online on 25 April in Nature Biotechnology and will be available in the June 2004 hard copy journal.

“Our tomatoes are doubly special” said Dr Cathie Martin (project leader at JIC). “They not only protect themselves against disease, but may benefit humans that eat them by protecting against age-related diseases. For us the excitement is that this adds to our understanding of how plants naturally protect themselves against stress and diseases, but in the long term it may be that this discovery leads to fruits that are better for us”.



The research team were interested in CGA because it is known to be an important antioxidant in both plants and animals. The biochemical pathway that plants use to make CGA was unknown, but a bit of biological detective work led the team to the likely pathway. When experiments confirmed their prediction, they were able to isolate one of the key genes (called HQT) for making CGA. When they suppressed the activity of the HQT gene (using gene silencing) they found that CGA levels in developing tomato fruits fell. The reverse happened when they increased the activity of HQT.

Antioxidants protect against the effects of stress and disease. To test whether higher levels of CGA give added protection the scientists infected the high CGA tomatoes with bacteria that cause tomato blight (Pseudomonas syringae). In the high CGA plants the effect and spread of the disease was significantly less than in the unmodified plants. Similarly, when the plants were tested for resistance to oxidative stress the high CGA plants were more resistant to stress damage than the unmodified plants.

“This research has highlighted for me the incredible ingenuity of plants in coping with their environment”, said Dr Tony Michael (Project Leader at IFR). “Plants possess a whole repertoire of genes involved in producing protective compounds. CGA is the main polyphenol in this category in tomatoes. Now we have identified the gene for the enzyme that produces it, we can look for genes that produce similar compounds in other plants, with benefits for agriculture and for human nutrition”.

The Intellectual Property Rights associated with this discovery are assigned to Plant Bioscience Ltd.

Ray Mathias | alfa
Further information:
http://www.jic.bbsrc.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>