Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More useful plants may sprout from gene role discovery

20.04.2004


It may be possible to alter plants so they are more nutritious and easier to process without weakening them so much they fall over, according to Purdue University researchers who found a new twist in a plant formation biochemical pathway.


Clint Chapple



Decreasing the amount of two acids in plant cell walls may enhance livestock feed digestibility for better nutrition, while increasing the potential uses of various plants, said Clint Chapple, Purdue biochemistry professor.

The findings, published in a recent issue of The Plant Cell, revise scientific thinking about the role of ferulic and sinapic acids in building plant cell walls. For many years, researchers believed that the two acids contributed to the production of lignin, the principal structural component of plant cell walls.


"It’s the hardening substance that makes the difference between a piece of celery and a piece of wood," Chapple said.

Based on laboratory studies, Chapple and his team found that an enzyme converts two molecules into the acids, which then are incorporated into cell walls. This indicates that sinapic and ferulic acids are end products rather than intermediates, or building blocks, in an essential biochemical pathway for cell wall construction, Chapple said.

"Now that we know the acids are not part of the lignin pathway, it may be possible to change cell walls without harming the plant," he said. "It will be easy to isolate and alter the corresponding gene in other plants, including those used for livestock feed such as corn."

The main focus of the research is to create more useful plants. In normal plants, cross linking of lignin, ferulic acid and other substances forms a strong bond that make cell walls difficult to break down.

But Chapple said he believes that cell walls could be manipulated so that nutrients in livestock feed are more easily absorbed into the digestive tract.

One clue that led Chapple’s team to its finding came when the scientists looked at leaves from normal and mutant Arabidopsis thaliana plants under ultraviolet lights. The normal Arabidopsis leaves appear blue-green under UV light. Mutants, which lack a derivative of sinapic acid, appeared red under the UV light. This enabled the researchers to identify the gene responsible for synthesis of sinapic and ferulic acids, compounds that subsequently are cross-linked into cell walls.

Altering the gene that programs an enzyme involved in creation of ferulic acid and sinapic acid might be a way to change cell wall make up, Chapple said. His team cloned the gene, called REDUCED EPIDERMAL FLUORESCENCE1 (REF1), which encodes an enzyme that is a member of the aldehyde dehydrogenase family. A similar enzyme helps the human body detoxify alcohol.

"People thought that we’d have a hard time manipulating ferulic acid in corn cell walls because that might mess around with lignin production and the plants would fall over," Chapple said about earlier hypotheses on producing more digestible animal feed.

The new findings may solve some agriculture production problems, he said.

"We appear to be reaching the limits of productivity in terms of bushels per acre," Chapple said. "You can only plant things so close together; plants can only grow so big. If a seed company were able to increase yield per acre by 1 percent, that’s a big improvement."

In contrast, if the quality of a crop or its digestibility could be altered, that would be a significant benefit to farmers and their livestock.

"You could feed a cow more, but even that has a limit because it will only eat so much," Chapple said. "Or you could make what the cow eats more energy-rich by improving the digestibility."

The other researchers involved in this study were: Ramesh Nair, now with Pioneer Hi-Bred International; Kristen Bastress, Duke University graduate student; Max Ruegger, now with Dow AgroSciences; and Jeff Denault, Eli Lilly and Co. research scientist. The U.S. Department of Energy’s Division of Energy Biosciences and the Howard Hughes Medical Institute Undergraduate Initiative provided funding for this research.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu
Source: Clint Chapple, (765) 494-0494, chapple@purdue.edu
Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/UNS/html4ever/2004/040419.Chapple.fluoresc.html
http://www.agriculture.purdue.edu/AgComm/public/agnews/

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>