Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact of agricultural activity on water resources in Navarre

06.04.2004


A group of researchers at the Navarre Public University, together with technical experts from the Navarre Provincial Government, are evaluating the impact of agricultural activity on water resources, based on a Net of Experimental Catchment Areas that the Provincial Administration has installed in several areas of Navarre.



To put this project into effect, the Agricultural Non Point Source Pollution method is being used; AGNPS is a technology which has been developed by the Department of Agriculture of the United States, a body with which the researchers at the Navarre Public University have signed a joint working agreement.

Three Experimental Catchment Areas in Navarre


Obtaining sustainable development is the evermore present objective in society. Agricultural activity is part and parcel of this, given that it has a significant impact on the environment, including, obviously, water resources. From the preliminary studies carried out by the Navarre Government Agriculture Department over more than 20 years, it is known that in Navarre there exist problems of water erosion accelerated by human activity. Once this situation was checked and its extent verified, the need to quantify the problem was tackled.

To this end, in 1994, the Navarre Government began to Net of Experimental Agricultural Catchment Areas representative of the most relevant usage and management of water resources in the Provincial Community. Currently this Net consists of three Catchment Areas: Latxaga, La Tejería and Oskotz. The first two are representative of the semiarid cereal crop conditions of the Midlands Zone of Navarre, where there is an attempt to identify problems of shifting earth together with other problems of normal agricultural activity such as contamination by agricultural chemicals. Later on in the study we looked for more humid terrain, where we could investigate the impact of pastoral farming. Moreover, to complete the research, a further type of representative catchment area is studied. For example, a vine-growing area in the south and another under irrigation, which would be representative, respectively, of Midlands Navarre and the Ribera (the Ebro river basin).

Each one of these catchment areas has a complete automatic meteorological station with data registration storage every ten minutes (various totaliser pluviometers) and one or two capacity measurement stations in which, apart from registering capacity data every ten minutes, information on water quality is registered, through taking samples of the water deposits.

The general aim is to collect, store and analyse data of the first estimates of soil loss in crop cultivation areas as well as the impact of agriculture on the quality of runoff. But also we have followed the technique suggested by the Navarre Department of Agriculture involving the need to interpret this data and draw conclusions that enable us to obtain information about the processes and tendencies over larger areas, over longer time periods and about the responses of the systems under different conditions. This is where the researchers from the Navarre Public University came in.

Models of cutting edge technology

Although there are numerous models capable of simulating the hydrological behaviour of water catchment areas – for different ends and these can be useful for understanding the cause-effect relationships amongst these -, the AGNPS model is one of the most complete and powerful tools for the study of hydrological, contaminant and erosive effects derived from agricultural and forestry activity.

The model is a distributive one which operates on an on-going, daily basis and which was developed in order to simulate the long-term transport of sediments and agricultural chemicals in large, unmonitored agricultural basins. The generation and circulation of runoff water and the transport of sediments, nutrients and pesticides are its fundamental components. It is model which enables the definition in a detailed manner of the characteristics of each zone within the catchment area or basin being studied, as it splits this up in more or less homogeneous areas (cells), connected to the drainage network. AGNPS measures and records the amount of runoff water and contaminants provided by each cell to the exutoria of the catchment area, which helps management personnel to identify these problem areas, thus enabling them to concentrate on corrective action more efficaciously.

Finally, we should take into account that, in the United States, the AGNPS model is currently a practical application tool, the results will be transmitted to the relevant bodies with the aim of deciding on possible lines of work regarding the better use and management of terrain, based on the experimental data and the simulations carried out.

Iñaki Casado Redin | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=443&hizk=I
http://www.unavarra.es

More articles from Agricultural and Forestry Science:

nachricht Back to Nature: Palm oil plantations are being turned back into protected rainforest
21.03.2019 | Forschungsverbund Berlin e.V.

nachricht The inner struggle of the evening primrose: Chloroplasts are caught up in an evolutionary arms race
14.03.2019 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>