Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact of agricultural activity on water resources in Navarre

06.04.2004


A group of researchers at the Navarre Public University, together with technical experts from the Navarre Provincial Government, are evaluating the impact of agricultural activity on water resources, based on a Net of Experimental Catchment Areas that the Provincial Administration has installed in several areas of Navarre.



To put this project into effect, the Agricultural Non Point Source Pollution method is being used; AGNPS is a technology which has been developed by the Department of Agriculture of the United States, a body with which the researchers at the Navarre Public University have signed a joint working agreement.

Three Experimental Catchment Areas in Navarre


Obtaining sustainable development is the evermore present objective in society. Agricultural activity is part and parcel of this, given that it has a significant impact on the environment, including, obviously, water resources. From the preliminary studies carried out by the Navarre Government Agriculture Department over more than 20 years, it is known that in Navarre there exist problems of water erosion accelerated by human activity. Once this situation was checked and its extent verified, the need to quantify the problem was tackled.

To this end, in 1994, the Navarre Government began to Net of Experimental Agricultural Catchment Areas representative of the most relevant usage and management of water resources in the Provincial Community. Currently this Net consists of three Catchment Areas: Latxaga, La Tejería and Oskotz. The first two are representative of the semiarid cereal crop conditions of the Midlands Zone of Navarre, where there is an attempt to identify problems of shifting earth together with other problems of normal agricultural activity such as contamination by agricultural chemicals. Later on in the study we looked for more humid terrain, where we could investigate the impact of pastoral farming. Moreover, to complete the research, a further type of representative catchment area is studied. For example, a vine-growing area in the south and another under irrigation, which would be representative, respectively, of Midlands Navarre and the Ribera (the Ebro river basin).

Each one of these catchment areas has a complete automatic meteorological station with data registration storage every ten minutes (various totaliser pluviometers) and one or two capacity measurement stations in which, apart from registering capacity data every ten minutes, information on water quality is registered, through taking samples of the water deposits.

The general aim is to collect, store and analyse data of the first estimates of soil loss in crop cultivation areas as well as the impact of agriculture on the quality of runoff. But also we have followed the technique suggested by the Navarre Department of Agriculture involving the need to interpret this data and draw conclusions that enable us to obtain information about the processes and tendencies over larger areas, over longer time periods and about the responses of the systems under different conditions. This is where the researchers from the Navarre Public University came in.

Models of cutting edge technology

Although there are numerous models capable of simulating the hydrological behaviour of water catchment areas – for different ends and these can be useful for understanding the cause-effect relationships amongst these -, the AGNPS model is one of the most complete and powerful tools for the study of hydrological, contaminant and erosive effects derived from agricultural and forestry activity.

The model is a distributive one which operates on an on-going, daily basis and which was developed in order to simulate the long-term transport of sediments and agricultural chemicals in large, unmonitored agricultural basins. The generation and circulation of runoff water and the transport of sediments, nutrients and pesticides are its fundamental components. It is model which enables the definition in a detailed manner of the characteristics of each zone within the catchment area or basin being studied, as it splits this up in more or less homogeneous areas (cells), connected to the drainage network. AGNPS measures and records the amount of runoff water and contaminants provided by each cell to the exutoria of the catchment area, which helps management personnel to identify these problem areas, thus enabling them to concentrate on corrective action more efficaciously.

Finally, we should take into account that, in the United States, the AGNPS model is currently a practical application tool, the results will be transmitted to the relevant bodies with the aim of deciding on possible lines of work regarding the better use and management of terrain, based on the experimental data and the simulations carried out.

Iñaki Casado Redin | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=443&hizk=I
http://www.unavarra.es

More articles from Agricultural and Forestry Science:

nachricht Sustainable forest management contributes more to climate protection than forest wilderness
07.02.2020 | Max-Planck-Institut für Biogeochemie

nachricht Microscopic partners could help plants survive stressful environments
30.01.2020 | Washington State University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Electric solid propellant -- can it take the heat?

14.02.2020 | Physics and Astronomy

Pitt study uncovers new electronic state of matter

14.02.2020 | Physics and Astronomy

Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique

14.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>