Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Puzzle of corn’s origins coming together

05.04.2004


The scientific puzzle pieces are fitting together to form a definitive picture of the origin of corn, says a Duke University plant geneticist who has proposed that the world’s most important food crop originated in an ancient cross between two grasses.



Mary Eubanks described the latest evidence that corn, or maize, originated as a cross between teosinte and gamagrass, or Tripsacum, in a talk Friday, April 2, 2004, at a symposium on maize held at the annual meeting of the Society for American Archaeology (www.saa.org) in Montreal. Her research is supported by the National Science Foundation and the North Carolina Biotechnology Center.

Eubanks, an adjunct professor of biology, has developed evidence that modern corn, scientific name Zea mays, did not evolve solely from a Central American grass known as teosinte -- traditionally the most widely held theory. Rather, her experiments clearly demonstrate that corn arose from a serendipitously viable cross between teosinte and gamagrass.


Eubanks emphasized in an interview that her research has confirmed that teosinte was indeed one of corn’s ancestors, and that gamagrass was a critical genetic contributor. She contrasts her evidence with the former, highly controversial theory of the late biologist Paul Mangelsdorf, who espoused that teosinte was an offshoot of a cross between corn and Tripsacum rather than an ancestor of corn. "My hypothesis confirms that teosinte is an ancestor of maize, and that key genes were also contributed by gamagrass," she said. In her talk, Eubanks displayed examples of her crosses between species of teosinte and gamagrass that exhibit the evolution from the tiny spikes of teosinte seeds to the early versions of corn ears.

New evidence from other researchers that maize evolved very rapidly, perhaps over only a century, supports such a theory, said Eubanks. Rather than the long, slow progressive evolution from teosinte into maize, a fertile cross between teosinte and gamagrass could have relatively quickly yielded early versions of maize. In her talk, Eubanks displayed archaeological specimens of corn alongside matching segregates from experimental crosses between teosinte and gamagrass.

Eubanks also discussed her comparative DNA fingerprinting studies of teosinte and Tripsacum taxa, along with primitive popcorns from Mexico and South America. Those analyses of over a hundred genes in the taxa revealed that some 20 percent of the versions, called alleles, of specific genes found in maize are found only in Tripsacum. And, about 36 percent of the alleles in maize were shared uniquely with teosinte.

"These findings are by no means conclusive," said Eubanks. "We need to do a lot more sampling of the genetic diversity in different teosinte and Tripsacum species to further test this finding. But certainly, the preliminary evidence from this study supports the hypothesis that Tripsacum introgression could have been the energizing factor for the mutations that humans then selected to derive domesticated maize."

In such selections, theorized Eubanks, early humans would have selected -- from the wide range of plants that would result from such crosses -- those that had the most numerous and accessible seeds. Eventually, such selection would have resulted in the cob-like structure of today’s corn, she said.

Understanding the genetic origins of corn -- now the world’s single largest food crop-- is important both for production of new varieties and for preserving corn’s genetic heritage, said Eubanks.

"Because the crosses between teosinte and gamagrass bridge the sterility barrier between maize and Tripsacum, I’m now moving genes from gamagrass into corn," she said. "And we have developed drought-resistant and insect-resistant corn using conventional plant breeding methods."

For example, according to Eubanks, who is working with a commercial seed producer, test crops of some new hybrids have shown strong resistance to the billion-dollar bugs corn rootworm and European corn borer, along with corn earworm, another problematic corn pest.

"Understanding the genetic origins of corn and how people historically used corn could offer valuable insights for application to sustainable agriculture today," she said. "And finally, the gene pool underlying corn is part of our heritage that must be preserved if we are to retain the ability to solve agricultural problems such as new pests or the need for new farming methods."

Also, she noted, the scientific emphasis on corn is particularly timely because of recent findings that genetically altered corn is contaminating the native land races of maize and its wild relative teosinte currently in Mexico. This alteration of the natural gene pools of these genetic resources could have the effect of reducing the diversity of corn varieties, and compromise the ability to use those varieties as the basis for new crop strains.

According to Eubanks, the new drought and pest-resistant hybrids she and her colleagues have developed will undergo field tests this summer in the Midwest, followed by yield trials in winter nurseries, more field tests in the Midwest in 2005, and marketing seed in 2006.

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu
http://www.saa.org

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>