Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved crop production and fewer greenhouse gases

30.03.2004


Agricultural research by Boston College’s Harrison

Kevin G. Harrison, an assistant professor in Boston College’s Geology and Geophysics Department, has published new research on a farming technique that can both increase crop yields and reduce the release of carbons that develop into greenhouse gases. In the book Changing Land Use and Terrestrial Carbon Storage, Harrison and his co-authors, Michelle Segal (BC master’s degree in 2003) and Matthew Hoskins (BC bachelor’s degree in 2000) of the University of Wyoming, describe the results of a study of various farming techniques and their impact on crop production and the environment.

The researchers studied three different methods of soybean farming: conservation (no-till drilling); conventional tillage, and organic farming. Their findings showed that the conservation method produced the highest crop yield, 15% more than conventional tillage and 110% more than organic farming. It also held the most carbon in the soil--41% more soil carbon than conventional tillage and 48% more than organic. This catching and holding of soil carbon, called sequestration, keeps carbon from being incorporated into carbon dioxide or other greenhouse gases that contribute to global warming.



"Our research suggests that farmers can make decisions about tillage that can help…mitigate the effects of global warming," writes Harrison and his co-authors.

"Switching from a conventional till method to conservation tillage could…produce 15% more food on the same amount of land," according to the authors. This has serious implications, they write, as the "global population continues to rise and the need to feed more people using less land is becoming more urgent."

For example, the conservation technique would use 52% less land than the organic method to produce the same amount of soybeans.

The research was conducted on a farm in Brighton, Iowa and supported by the U.S. Department of Agriculture and Boston College.

Harrison’s area of study focuses on the effects of fossil fuel combustion, acid rain and deforestation on the buildup of carbon dioxide in the atmosphere. At Boston College, he teaches courses on "Biogeochemistry of the Habitable Planet"; "Environmental Geochemistry: Living Dangerously," and "Weather, Climate and the Environment: Global Warming." He earned a bachelor of science degree in chemistry and a bachelor of arts degree in English and American literature at Brown University. He received a master’s degree in marine chemistry from the University of California at San Diego’s Scripps Institution of Oceanography, and master’s and doctoral degrees in geological sciences from Columbia University.


For more information, contact Harrison at 617-552-4653 or at kevin.harrison@bc.edu.

Kathleen Sullivan | EurekAlert!
Further information:
http://www.bc.edu/

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>