Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using soils as filters to prevent ’crypto’ from moving to the groundwater

01.03.2004


A study published in the Vadose Zone Journal examines how different soil types affect Cryptosporidium parvum’s transport.



Groundwater is generally considered a safe source of drinking water because pathogens are presumably filtered out during their transport through unsaturated soils. Nevertheless, pathogen-contaminated groundwater has been the cause of many disease outbreaks in the last 10 years including cryptosporidiosis caused by the protozoan pathogen Cryptosporidium parvum. Standard chlorine disinfection is not effective at killing the pathogen.

Although several "crypto" outbreaks have occurred in the U.S., the most severe problem is in Africa where both the sanitary conditions are poor and a significant portion of the population has HIV. It is especially dangerous for people with a compromised immune system because it can lead to severe diarrhea and lethal dehydration. the most notable being a cholera epidemic in London in 1854.


A study published in the February 2004 issue of Vadose Zone Journal, which was funded by the USDA-National Research Initiative program and performed at Cornell University Department of Biological and Environmental Engineering, examines how C. parvum oocysts may be transported via preferential flow to groundwater.

A simulation model was developed on the basis of an existing preferential flow model. Column experiments with sandy and undisturbed structured soils were performed. Calf manure with cryptosporidiosis was applied to the columns soil surface, followed by rain. Chloride was also added as a tracer.

"Traditionally, people assume that soils filter out pathogens. This is based upon the premise that water and pathogens move slowly through all of the soil. We found that for sandy soil, where water moved rapidly through, there was indeed very little filtering initially. Surprisingly, the undisturbed, structured columns with large macropores had only a very limited breakthrough," said Tammo Steenhuis, Cornell University, who was one of the researchers of the study.

Although this study shows that the pathogen could enter the groundwater easily at certain levels, the experiments were carried out by designing transport-enhancing, worst-case conditions consisting of infected fresh manure spread shortly before a major rainstorm on a coarse sandy soil with a short distance to ground water. Contamination is much less likely to occur when conditions are not as extreme, for example when manure is dry before the rainfall starts or when the groundwater is not as shallow.


Online subscribers can access the full article; nonsubscribers can access the abstract, or pay a $10 per-article fee, or buy a $25, 14-day site pass, at: http://vzj.scijournals.org/cgi/content/abstract/3/1/262.

Vadose Zone Journal, www.vadosezonejournal.org, is an electronic, peer-reviewed, international publication published by the Soil Science Society of America (SSSA), with the Geological Society of America as cooperator. The research and assessment needs of the vadose zone have grown in response to the pressure of increasing human impacts, prompting this new publication for a diverse range of scientists and engineers. The mission of the Vadose Zone Journal is to disseminate information about the physical, chemical, and biological processes operating in this zone and to facilitate science-based decision making and sustainable management of the vadose zone.

The American Society of Agronomy (ASA) www.agronomy.org, the Crop Science Society of America (CSSA) www.crops.org and the Soil Science Society of America (SSSA) www.soils.org are educational organizations helping their 10,000+ members advance the disciplines and practices of agronomy, crop and soil sciences by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://vzj.scijournals.org/cgi/content/abstract/3/1/262
http://www.vadosezonejournal.org
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Potential seen for tailoring treatment for acute myeloid leukemia

10.12.2018 | Health and Medicine

A new 'spin' on kagome lattices

10.12.2018 | Physics and Astronomy

Proteins imaged in graphene liquid cell have higher radiation tolerance

10.12.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>