Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insights gained from molecular modeling may lead to better insecticides

25.02.2004


One of the most damaging crop pests, the corn earworm, may be outwitting efforts to control it by making structural changes in a single metabolic protein, but new insights uncovered by molecular modeling could pave the way for more efficient insecticides, say researchers at the University of Illinois at Urbana-Champaign.


The modeled structure of the CYP6B8 protein in the corn earworm (Helicoverpa
zea). A potential substrate binding cavity, in green, where insecticides or plant defense chemicals can be detoxified, is shown above the heme, the small complex that includes the red sphere at its center
Photo courtesy of Jerome Baudry



In a study that compared the ability of corn earworms (Helicoverpa zea) and black swallowtail butterflies (Papilio polyxenes) to neutralize insecticides and plant defense allelochemicals that target insect herbivores, researchers focused on the insectsÕ primary detoxifying cytochrome P450 enzymes.

The study was published online Monday (Feb. 23) in advance of regular publication in the Proceedings of the National Academy of Sciences.


Earworms, which can feed on hundreds of different kinds of plants, have evolved generalist counter-defense P450 proteins that can process more diverse arrays of harmful agents than can similar proteins in black swallowtails, which consume a restricted diet of only two plant families.

Predictive three-dimensional modeling of the structures of the proteins detoxifying allelochemicals and insecticides has indicated vivid differences in the catalytic sites of CYP6B1, the P450 in black swallowtails, and CYP6B8, the P450 protein in earworms.

Because the corn earwormÕs metabolic protein is more flexible, it can bind to and detoxify six different kinds of plant defense chemicals as well as three common insecticides, said Jerome Baudry, a senior research scientist in the School of Chemical Sciences at Illinois. "This generalist insect has adapted to the natural chemical defenses of plants so that it can feed on a wider variety of plants," he said.

The P450 studied in the specialist is significantly more constrained. It contains a more rigid catalytic pocket that restricts the range of plant chemicals and insecticides that can enter and be processed, Baudry said.

While the specialization allows for much higher rates of detoxification of chemicals that black swallowtails normally encounter, they can handle few other toxins. In the study, the CYP6B1 protein metabolized only two plant defense chemicals and one insecticide.

"This is the first clear demonstration that resistance to plant allelochemicals and insecticides can be acquired by changes within a single P450 catalytic site," said Mary A. Schuler, a professor of cell and structural biology. "If you can identify the P450 responsible for metabolizing insecticides and find a way to inactivate its catalytic site, you kill the P450 and prevent it from detoxifying insecticides."

Accomplishing that, however, wonÕt be easy because there is at least one other P450 in corn earworms that also handles insecticides, she said. "To truly hit the earworms, you would need to find one inhibitor that can kill both enzymes. Ultimately, it may be possible to use a synergistic approach that would kill more insects using significantly lower levels of insecticides, thereby reducing the toxicity of insecticides in the environment," she said.

Structural differences of the P450s involved in these chemical detoxifications result from changes in the arrangement of amino acids within the catalytic sites. In the black swallowtailÕs version, aromatic rings protrude into the substrate binding site, creating a rigid space in which allelochemicals or insecticides must fit exactly Ð like keys going into locks, Baudry said. The amino acid residues in the catalytic site stabilize the toxic substrate so it is optimally bonded with the proteinÕs heme, an iron-containing pigment in the catalytic site that mediates oxidation of the chemical to a non-toxic product.

In the earworm protein, many of the aromatic rings are missing, creating a much more accessible and flexible catalytic site. As a result, toxins of many different shapes and sizes can enter and be detoxified. Since the toxins are not as rigidly restricted, they are not detoxified quite as efficiently as some of the toxins encountered by the specialist P450.

"The corn earworm thus is jack of many trades but master of none, but this biochemical ability allows it to acquire new host plants and overcome new pesticides with relative ease," said co-investigator May R. Berenbaum, the head of the entomology department at Illinois and an expert on allelochemicals.


Xianchun Li, a doctoral student in entomology, also was a coauthor of the paper and a major contributor to the research.

The study was funded by grants from the U.S. Department of Agriculture to Schuler and Berenbaum, a grant from the National Institutes of Health to Schuler, and a China Natural Science Foundation grant to Li.

Jim Barlow | UIUC
Further information:
http://www.news.uiuc.edu/news/04/0224insects.html
http://www.uiuc.edu/index.html

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

Molecular switch detects metals in the environment

15.08.2018 | Materials Sciences

Seeing on the Quick: New Insights into Active Vision in the Brain

15.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>