Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new twist on the mad cow

30.01.2004


Scientists at The Scripps Research Institute discover the normal prion protein may contribute directly to disease



In a surprising twist on a timely topic, scientists at The Scripps Research Institute are presenting evidence that mad cow disease prions cannot kill neurons on their own and that normal, healthy cellular prion protein may be a direct accomplice in unleashing neuronal destruction.

Bovine spongiform encephalopathy (BSE), or mad cow disease, is caused by prions, a misfolded "scrapie" form of the normal cellular protein, which is found on the surface of human, sheep, and cow neurons. Prion infections are also implicated in one form of the same disease in humans, called Variant Creutzfeldt-Jakob Disease, an incurable condition that causes neurologic abnormalities, dementia, and eventually death.


BSE has caused widespread public concern when it has appeared in cattle in Europe, Canada, and most recently the United States, as it is believed that the disease is transmitted across species by the consumption of prions from a diseased animal’s central nervous system.

Unlike most infectious diseases, the infectious material of mad cow and other prion disease is not a virus, bacteria, or some other pathogen, but a protein. Normally, prion proteins are expressed throughout the body and sit anchored onto the surfaces of cells in a wide variety of tissues, particularly on cells in neuronal tissue. They are something of an enigma because scientists do not know what they do there. But if the function of prions is mysterious, their malfunction is notorious.

"The prion protein," says Scripps Research investigator Anthony Williamson, Ph.D., "has a Jekyll and Hyde personality."

A New View of Normal Prions

Previously, scientists viewed the normal cellular prion protein as mere fodder that the scrapie prions would turn into more scrapie prions until an army of scrapies grew into a spongy mass, killing brain cells, and causing the neurological wasting that characterizes the disease.

Now, Williamson and his colleagues in the Department of Immunology at The Scripps Research Institute are telling another story.

In an upcoming issue of the journal Science, Williamson and his colleagues present evidence that scrapie prions cannot kill neurons on their own. They required normal cellular prions to be present.

Furthermore, Williamson and his colleagues discovered that they were able to induce catastrophic neurotoxicity in vivo without any scrapie prions at all by adding antibody molecules, which cross-linked the normal prion protein. Thus, engaging and activating the normal prion protein triggered the type of neurodegeneration that characterize BSE and variant Creutzfeldt-Jakob.

This suggests a possible mechanism for prion pathogenesis-- that scrapie prions cross-link normal cellular prions, killing neurons in the process. Rather than being innocent bystanders until converted into scrapie prions, normal cellular prions may be essential ingredients for prion diseases like BSE.

While illuminating the mechanisms of disease, the findings also suggest caution to one possible approach to fighting prion diseases-- administering antibodies or small molecules that will bind to the normal prion protein and prevent the scrapie prions from binding. However, it now appears that in cross-linking the normal prion protein, such a therapy may actually promote rapid spongiosis.


The research article, "Crosslinking Cellular Prion Protein Triggers Neuronal Apoptosis in vivo," is authored by Laura Solforosi, Jose R. Criado, Dorian B. McGavern, Sebastian Wirz, Manuel Sánchez-Alavez, Shuei Sugama, Lorraine A. DeGiorgio, Bruce T. Volpe, Erika Wiseman, Gil Abalos, Eliezer Masliah, Donald Gilden, Michael B. Oldstone, Bruno Conti, and R. Anthony Williamson and appears in Science Express on January 29, 2004. Science Express provides rapid electronic publication of selected papers in the journal Science. Print versions of these papers will appear in Science after several weeks. See: http://www.sciencemag.org/sciencexpress/recent.shtml.

The research was funded by the National Institutes of Health, the Department of Defense National Prion Research Program, and the Clark Fellowship in Neurophysiology from the Brain Research and Treatment Center, Scripps Clinic.

About The Scripps Research Institute

The Scripps Research Institute in La Jolla, California, is one of the world’s largest, private, non-profit biomedical research organizations. It stands at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its research into immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune diseases, cardiovascular diseases and synthetic vaccine development.

Jason Bardi | Scripps
Further information:
http://www.sciencemag.org/sciencexpress/recent.shtml
http://www.scripps.edu/
http://www.scripps.edu/news/press/012904.html

More articles from Agricultural and Forestry Science:

nachricht Goldilocks principle in biology -- fine-tuning the 'just right' signal load
15.10.2018 | Aarhus University

nachricht Food for the city – from the city
03.09.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

 
Latest News

Unravelling the genetics of fungal fratricide

16.10.2018 | Life Sciences

Blue phosphorus -- mapped and measured for the first time

16.10.2018 | Physics and Astronomy

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>