Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corn earworm moths get a lift from the wind

15.01.2004


Most corn earworms cannot survive the cold of a Northeastern winter, but each summer this sweet corn pest arrives back in the cornfields of the northeastern United States more quickly than most people believe is possible. Now, a team of Penn State meteorologists thinks it knows how the small moths travel long distances so quickly, and perhaps can predict where and when they will appear next.



"For years, researchers have assumed that the moths travel in parcels of air," says Matthew Welshans, undergraduate in meteorology and undergraduate research assistant at Penn State’s Environment Institute. "Few had actually tested this assumption, and no one tried to predict where or when the moths would land and earworms would appear in the Northeastern states."

Working with Dr. Shelby Fleischer, professor of entomology; Paul Knight, Penn State meteorologist; and Dr. Douglas A. Miller, assistant professor of geography, Welshans investigated the potential paths of corn earworm moths and other pests such as armyworm if they rode the wind as they spread northward during the spring and summer.


"We found a discernible trend that the corn earworm travels at some height and is impacted by the direction of the air currents," he told attendees of the 84th annual meeting of the American Meteorological Conference today (Jan. 14). "Depending on the time of day, the travel height could be from 500 meters (1640 feet) to a kilometer (3274 feet)."

The corn earworm larva is a major pest of sweet corn that destroys the top of the corn cob. While they will eat both field and sweet corn, a little damage to tops of field corn is irrelevant, while a chewed-up ear of sweet corn is not marketable.

"The northeastern United States accounts for more than 100,000 acres of sweet corn, or about a third of the total crop in the U.S.," Welshans said. "The crop was valued at more than $147 million in 2000."

The corn earworm moth lays its eggs on the corn silk but will lay them on other parts of the plant if the silk is not available. The eggs hatch in 2 to 10 days into small larvae that eat down the corn silk into the kernels at the tip of the ear. Because corn earworms are cannibalistic, usually only one or two larvae make it to the tender kernels. Eventually they drop to the ground and burrow in to pupate and emerge from the ground as moths. In the south, the earworms can have three generations per season with the last pupae wintering over before emerging to restart the cycle. In the north, assuming ground temperatures are normally cold, the winter-pupated insects freeze in the ground.

"Each year, in Pennsylvania, new corn earworms must fly into the area and repopulate," says Welshans. "But, the population grows much faster and greater than a slow move northward."

The researchers used a real-time tracking program called PestWatch that already exists in the Northeast. PestWatch uses blacklight traps that capture male and female moths and pheromone traps that capture male corn earworm moths. Individual volunteers count the insects in the traps once a week and report back to the PestWatch researchers at Penn State. The annual spread of the pest is put online so that farmers can see where insects are showing up (www.pestwatch.psu.edu).

Using this real pattern of insect population, along with a model developed by the National Oceanic and Atmospheric Administration to show wind patterns and a weather forecasting model to predict weather patterns, the researchers compared the actual pattern of insect appearances to that predicted by the wind and weather models.

"We want to be able to forecast when and were the moths, and subsequent larvae, will show up so that we can target the insects," says Welshans. "Then farmers can tailor the insecticides to reduce the amounts used or change their harvest or culling efforts."

With the two models and up-to-date information on where moths are, the Penn State researchers can not only track the insects but can also look backward at their paths to see where they are coming from and forward, to see where they will hit next.

"We are currently working on a flash program to animate the trajectories and integrate the PestWatch data so we can see the paths forward or backward," says Welshans. "Hopefully, this will be on-line for summer 2004."

One problem with the model is that volunteers only check the traps once a week so information tends to lag behind actual movement of the moths. However, because the various volunteers check their traps on different days of the week, using that to fill the time lag might be possible.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/
http://www.pestwatch.psu.edu

More articles from Agricultural and Forestry Science:

nachricht No soil left behind: How a cost-effective technology can enrich poor fields
10.10.2019 | International Center for Tropical Agriculture (CIAT)

nachricht Cheap as chips: identifying plant genes to ensure food security
09.10.2019 | University of Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling

17.10.2019 | Physics and Astronomy

Creating miracles with polymeric fibers

17.10.2019 | Physics and Astronomy

Synthetic cells make long-distance calls

17.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>