Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diversity: What people, grain sorghum have in common

27.11.2003


To society, the word means racial, ethnic and cultural differences. To scientists interested in biological diversity, the meaning is no different.



So assembling Hispanic, African-American and Caucasian students and professors to examine the genome of grain sorghum, and tap into the collection of 40,000 different varieties from around the world, seems like the sensible thing to do.

Outreach to under-represented groups in hopes of attracting new scientists is part of a $2 million sorghum genome grant, funded under the Plant Genome Project of the National Science Foundation, recently awarded to a team led by Dr. Patricia Klein, Texas Agricultural Experiment Station researcher at Texas A&M University’s Institute for Plant Genomics and Biotechnology.


Klein and co-investigators Dr. John Mullet and Dr. Robert Klein will work with Dr. Tineke Sexton at Houston Community College to teach aspiring students how to generate and analyze genetic fingerprints on the sorghum varieties and to present their findings in various scientific arenas. Mullet is the institute’s director and Robert Klein is a U.S. Department of Agriculture-Agriculture Research Service scientist.

"We need all the talent we can get in the sciences," said Mullet, himself once a liberal arts major with hopes for a law degree until a biology class grabbed his interest.

Here’s how it will work. Klein, Klein and Mullet will train Sexton in their labs at Texas A&M. Sexton, in turn, will train HCC students to extract DNA and fingerprint a subset of lines from the 40,000-variety sorghum collection, using funds from the grant to help set up labs at HCC. The sorghum team also will give guest lectures to Sexton’s classes in Houston, and the Internet will be used to keep the students and faculty connected.

Since the Plant Genome Research Project began in 1998, NFS has awarded some $375 million to 120 projects. Over the last decade, Mullet noted, NSF has emphasized trying to integrate research with education and training.

"The makeup of the Houston Community College System is exactly the demographics that we needed to tap into, and their enrollment is about the same as here at Texas A&M," Patricia Klein said. "That made the connection for us."

HCC awards associate degrees to one of the most diverse student bodies in the country, according to Patricia Klein. Its 50,000 students are 23 percent African-American and 36 percent Hispanic.

The sorghum team had been grappling with how to interest a diverse set of college students to participate in their research when Sexton, a former doctoral student of Mullet’s, called with a plea. Sexton, a native of The Netherlands now teaching at HCC, was looking for her former professor’s support on a grant she sought to help engage her students in science.

Out of the $1.9 million overall grain sorghum genome project, therefore, the team carved out some $200,000 to work with the Houston college’s undergraduates. Mullet said the grant will be augmented with funds from the Heep Foundation as well.

Patricia Klein hopes to see "excitement from the students who realize the potential." She said the project will "put a face with a name" as students get to work with researchers on the high-profile genome project.

"I would hope that some who are involved with this project at the community college will want to stay in science," she said. "And those who come to Texas A&M would be able to come to work in our labs here as well."

That connection would benefit not only the students but the researchers who acknowledged that finding students who want to work in science labs can be difficult.

Work by the students will have a major impact on the grain sorghum research. Grain sorghum is grown throughout much of the world and is important both as livestock feed and for human consumption. Genes for a trait of major importance - drought resistance - will be the focus of the overall project which will take about four years, Mullet said.

Kathleen Phillips | Texas A&M University
Further information:
http://agnews.tamu.edu/dailynews/stories/SOIL/Nov1903a.htm

More articles from Agricultural and Forestry Science:

nachricht A genetic map for maize
24.02.2020 | University of Delaware

nachricht Computer vision is used for boosting pest control efficacy via sterile insect technique
24.02.2020 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish

24.02.2020 | Life Sciences

KIST researchers develop high-capacity EV battery materials that double driving range

24.02.2020 | Materials Sciences

How earthquakes deform gravity

24.02.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>