Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tree root life controls CO2 absorption

21.11.2003


Argonne research published in Science



A new study, published today in Science, indicates that the potential for soils to soak up atmospheric carbon dioxide is strongly affected by how long roots live. Large differences in root replacement rates between forest types might alter current predictions of how carbon absorption by soil will act to ameliorate global warming from excess human-caused carbon dioxide.

The study, by researchers at Argonne National Laboratory, Duke University, University of Illinois at Chicago, and Oak Ridge National Laboratory, was funded primarily by the U.S. Department of Energy Office of Science.


The new study used a novel technique to measure the longevity of roots – the source of some of the carbon that would be transferred by decay into the soil – in trees growing in forest plots infused with a computer-controlled flow of carbon dioxide. The flow was metered to maintain the higher atmospheric carbon dioxide levels predicted to occur in the middle of this century. Such an increase in carbon dioxide, caused by the burning of fossil fuels and clearing of the world’s forests, underlies the global warming that scientists widely believe to have already begun.

The scientists’ measurements revealed that the roots of loblolly pine but not sweetgum trees growing in simulated mid-century air at two experimental sites remained intact far longer and transferred less carbon into soils than scientists had expected.

"Our data showed that fine root replacement varied from 1.2 to 9 years depending on root diameter and forest type," said Argonne environmental scientist Roser Matamala, lead author of the Science article. Co-author William Schlesinger, Dean of Duke’s Nicholas School of the Environment and Earth Sciences, called the root study results "a huge change from dogma, which says that these roots turn over all the time. This really says the roots can last quite a while."

"Some forests would do a better job than others in taking up carbon dioxide from the atmosphere and placing it into the soil," Matamala said. "Pine forests have slow root replacement which decreases the potential to accumulate carbon in the soil in the short-term, while the fast root replacement coupled with increased root production in the sweetgum forest led to a rapid and significant increase in soil carbon".

Some policy makers expect that the surge of human-produced CO2 will boost plant growth enough to remove much of the extra gas from the atmosphere. The assimilated carbon dioxide, converted into carbohydrates during photosynthesis, would thus be stored in plant tissue for long periods, ameliorating the gas’s potential impact on predicted global warming. Under this scenario, significant amounts of residual carbon would ultimately be sequestered in soil particles when roots and other tree parts decay.

"The major implication for greenhouse management strategies is that some forests won’t transfer carbon from the atmosphere to soils at the speed we need them to do it to reduce global warming," said co-author Miquel Gonzalez-Meler at the University of Illinois at Chicago.

To test how a CO2-enriched atmosphere will actually affect the environment, the researchers bathed test plots within a growing loblolly forest near Duke and in plots of sweetgum-dominated woodlands in eastern Tennessee with addition carbon dioxide. At both the Duke and Oak Ridge test sites the extra carbon dioxide is released from arrays of tower-mounted valves that are computer-controlled to ensure levels of the gas expected in the air worldwide by mid-century.

During the first three years of these continuing seven-year experiments, the extra CO2 boosted overall pine growth by 25 percent and sweetgum production by 21 percent, according to the Science report. However, carbon tracer measurements revealed that the fine roots of the trees at the Duke site lasted significantly longer than plant biologists had previously estimated, implying that they are replaced less often and carbon transfer to soil is slow. The fine roots in the Oak Ridge site, however, have a shorter life, and much more of the extra carbon is transferred faster to the soil.

The carbon tracer approach used in the study gives scientists a more accurate way to estimate replacement of roots because it documents how long the carbon actually resides in root tissue. The fact that growing roots are so hard to study without killing them or disturbing their growth has led scientists to overestimate how much carbon from extra doses of carbon dioxide might end up in the soil.

The analysis revealed that the pines showed a root carbon turnover of 4.2 years, and the sweetgums showed a carbon turnover of 1.25 years. Plant biologists had previously estimated that such roots would be replaced once every year in average. Based on this analysis, the larger roots would last even longer, said the scientists. Other carbon tracer studies confirmed that the long root turnover rates are changed by carbon dioxide levels.

"These long root lifetimes suggest that root production and turnover in forests have been overestimated and that sequestration of anthropogenic (human-produced) atmospheric carbon in forest soils may be lower than currently estimated," wrote the paper’s authors.


Other authors are Richard Norby of Oak Ridge National Laboratory and Julie Jastrow of Argonne National Laboratory.

Catherine Foster | EurekAlert!
Further information:
http://www.anl.gov/

More articles from Agricultural and Forestry Science:

nachricht New research recovers nutrients from seafood process water
31.10.2018 | Chalmers University of Technology

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>