Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After the Forest Fire: Evergreen Needles Prevent Soil Erosion

18.11.2003

Once a raging forest fire is quelled, the next worry is erosion of the landscape. With vegetation destroyed, rain easily washes away the soil, causing large flows of debris and landslides. Erosion endangers sources of drinking water, streams, and roads.

In an unprecedented study, Chris Pannkuk and Peter Robichaud show that scorched evergreen needles can play a key role in preventing erosion after a forest fire. They found that ponderosa pine needles were effective in reducing erosion caused by water running over the soil, and Douglas fir needles were effective in reducing erosion caused by rain hitting and splashing into soil. Their report will appear in Water Resources Research, published by the American Geophysical Union.

These findings can help post-fire rehabilitation teams decide where to apply treatments to reduce erosion. "If you see brown needles in the trees," Robichaud said, "then let’s take advantage of Mother Nature and not add any treatments to that area of the forest."

Wildfires usually burn in mosaics, with patches of low, moderate, and high severity. In areas of low or moderate severity, needles from partially burned conifer trees fall to the ground within a few months after the fire. Robichaud noticed that needle cover seemed to reduce erosion on forest soils after a fire. Since no one had formally studied this effect, he and Pannkuk used an artificial rain laboratory at the U.S. Department of Agriculture’s Forestry Science Laboratory in Moscow, Idaho, to see how much burnt needles could reduce erosion.

They filled four-meter by one-meter [13-foot by 3-foot] boxes, set at a 22-degree slope, with soil taken from burnt forests. After covering the soil with various amounts of scorched ponderosa pine and Douglas fir needles, they applied artificial rain for 25 minutes at an intensity that would simulate 34 millimeters [1.3 inches] of rain per hour. During each test, they also introduced a stream of water at the top of the box to simulate overland water flow.

The researchers collected and analyzed run-off soil and water from the boxes. They found that a 50 percent ground cover of Douglas fir needles reduced water flow erosion by 20 percent and rain-induced erosion by 80 percent. A 50 percent ground cover of ponderosa pine needles reduced water flow erosion by 40 percent and rain-induced erosion by 60 percent.

Robichaud, who has been studying and modeling erosion after prescribed and wildfire for 13 years, directs several treatment effectiveness projects in California, Colorado, Idaho, Montana, Nevada, and Washington. Pannkuk, who worked with Robichaud as a post-doctorate on this project, is currently a natural resources consultant.

Harvey Leifert | AGU

More articles from Agricultural and Forestry Science:

nachricht New research recovers nutrients from seafood process water
31.10.2018 | Chalmers University of Technology

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>