Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly found gene resistant to economically crippling wheat disease

21.08.2003


Stephen Goodwin’s wheat research may lead to a reduction in the amount of grain lost to leaf blotch. Goodwin is an associate professor of botany and plant pathology at Purdue University. (Agricultural Communications photo/Tom Campbell)


Bread wheat plants carrying a newly discovered gene that is resistant to economically devastating leaf blotch can reduce the amount of grain lost to the pathogen, according to Purdue University researchers.

The scientists used bread wheat species to find the gene and the markers, or bits of DNA, that indicate presence of the naturally occurring gene. The fungus causes wheat crop damage worldwide with yield losses of 50 percent or more in some places. In the United States the disease is widespread in the Pacific Northwest, the northern Great Plains and the eastern Midwest soft wheat region, and experts estimate annual losses at $275 million.

Results of the Purdue study on resistance to the fungus that causes Septoria tritici leaf blotch are published in the September issue of Phytopathology and appear on the journal’s Web site.



"The goal of our work is to find additional resistance genes to the fungus Mycosphaerella graminicola so we can use the lines carrying these genes in our wheat to avoid the breakdown of resistance in the plants," said Stephen Goodwin, associate professor of botany and plant pathology and U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) scientist. "Having the markers greatly speeds up the breeding process for resistant plants."

The markers facilitate finding plants with the pathogen resistance gene. As soon as a seedling sprouts, a small piece of the young leaf can be ground and then a DNA test can be run. This shows whether the markers are present.

"Using the markers, in a few days you can tell which plants have the resistance gene and which don’t," Goodwin said.

The researchers discovered the gene Stb8, so named because it is the eighth gene known to provide resistance to Septoria tritici leaf blotch (STB). However, this gene has some differences compared with the ones found previously, Goodwin said.

Several of the previously found genes conferred resistance on bread wheat plants for only a few years – up to about 15 years. Stb8 has genetic characteristics that may allow it to be effective for a much longer period of time, Goodwin said.

The genome containing Stb8 originated from a pasta wheat parent, which is resistant to most strains of the fungus. This may extend the usefulness of the resistance gene for bread wheat.

The specific location of Stb8 on the genome is different than all the previously known resistance genes for wheat blotch. This site should allow Stb8 to be combined with other genes that also offer some protection against the disease, thereby increasing plants’ resistance.

Stb8 and its markers are naturally occurring in wheat lines already in use, so they can be used immediately for farmers’ breeding programs to gain protection against leaf blotch, Goodwin said.

The long-term goal of the research of leaf blotch resistance genes is to learn about the molecular pathways that allow the plants to respond to pathogens, he said.

"If we can understand these biochemical processes that lead to resistance, then in the future we may learn how to modify them to make these genes more durable," Goodwin said.

Though different resistance genes seem to work more effectively in different parts of the world, the pathogen is easily spread, especially in today’s world of fast transportation. The fungus is spread and grows by spores and it can survive in dried leaves for a very long time, Goodwin said.

"We even store them that way, sometimes for years," he said. "If you keep the leaf dry, it won’t decay and the pathogen just sits there. Or you can freeze it at —80 C, thaw it, and then spray it with water – it will start growing."

Leaf blotch doesn’t kill plants, but it weakens them sufficiently to cause significant crop loss. Purdue scientists determined resistance to the fungus by observing whether the disease appeared on the leaves of adult plants and by measuring the number of spores present. This particular disease seems to affect young plants and adult plants to the same degree.

The other researchers involved in this study are Tika Adhikari, USDA-ARS and Department of Botany and Plant Pathology postdoctoral fellow, and Joseph Anderson, USDA-ARS scientist and Purdue Department of Agronomy assistant professor.

The USDA-ARS provided funding for this study.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu
Source: Stephen Goodwin, (765) 494-4635, sgoodwin@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030820.Goodwin.resist.html
http://www.apsnet.org/phyto/
http://www.btny.purdue.edu/Faculty/Goodwin/

More articles from Agricultural and Forestry Science:

nachricht New research recovers nutrients from seafood process water
31.10.2018 | Chalmers University of Technology

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

NASA keeps watch over space explosions

16.11.2018 | Physics and Astronomy

UNH scientists help provide first-ever views of elusive energy explosion

16.11.2018 | Physics and Astronomy

How the gut ‘talks’ to brown fat

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>