Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find gene that protects against potato blight

15.07.2003


Scouring the genome of a wild Mexican potato, scientists have discovered a gene that protects potatoes against late blight, the devastating disease that caused the Irish potato famine.


Potato plants exposed to the pathogen that causes late blight, the disease responsible for the Irish potato famine, soon wither and die (left). The plant on the right has been engineered to resist the devastating disease through incorporation of a gene found in a wild Mexican potato, as part of research by John Helgeson, professor of plant pathology and Jiming Jiang, professor of horticulture and others.
Photo by: courtesy department of plant pathology
Date: July 2003



The discovery of the gene and its cloning by scientists at the University of Wisconsin-Madison was reported today (July 14) in online editions of the Proceedings of the National Academy of Sciences (PNAS).

The identification of the gene, found in a species of wild potato known as ´Solanum bulbocastanum, holds significant potential. All of the varieties now cultivated commercially on more than 1.5 million acres in the United States are highly susceptible to potato late blight, a family of fungal pathogens that wreaks havoc in the field, turning tubers to mush and invariably killing any plant it infects.


"We think this could be very useful," says John Helgeson, a UW-Madison professor of plant pathology, a research scientist with the U.S. Department of Agriculture and a senior author of the PNAS paper. "No potato grown in the United States on any scale at all has resistance to this disease."

With the blight-resistant gene in hand, the Wisconsin team, which also includes Jiming Jiang, a UW-Madison professor of horticulture, was able to engineer plants that survived exposure to the many races of Phytophthora infestans. The insertion of a single gene, according to Jiang and Helgeson, effectively protects plants from the range of late blight pathogens.

"So far, the plants have been resistant to everything we have thrown at them," says Helgeson.

The world’s most serious potato disease, late blight is best known as the cause of the Irish potato famine. Seeming to appear from nowhere in 1845, the fungus wiped out the staple crop of the densely populated island nation, causing mass starvation over five years, killing more than a million people and sparking a wave of immigration that had worldwide social consequences.

More than 150 years later, Ireland’s population has yet to return to pre-famine levels.

Prior to the 1990s, chemical fungicides were available in the United States and effectively held the disease at bay. But new strains of the pathogen have emerged, testing the limits of the technology and requiring American farmers to treat potato fields as many as a dozen times a season at a cost of up to $250 per acre. In warmer climates such as Mexico, fields may be treated as many as 25 times a year with the costly and toxic chemicals.

"We used to be able to get by, but the new (late-blight) strain just levels things in no time at all," says Helgeson.

The gene that protects potatoes from the fungus comes from a plant that scientists believe co-evolved in Mexico alongside the late-blight pathogen. It was discovered, ironically, as a result of the emergence of a new strain of P. infestans that swept through the United States in 1994. At UW-Madison’s Hancock Agricultural Research Station, the only plants to survive were the wild Mexican species and its progeny in Helgeson’s test plots.

Subsequent to the 1994 outbreak, which required the development of new fungicides for agriculture, Helgeson and his colleagues began the hunt for the genes that conferred resistance on the wild Mexican cousin of the domesticated tubers familiar to consumers.

In 2000, Helgeson’s lab reported narrowing the search to one of the 12 chromosomes of the wild plant. Now, with the gene identified, cloned and successfully tested in engineered varieties in the laboratory, at hand is a new technology that could save farmers hundreds of millions of dollars and benefit the environment by eliminating the application of thousands of tons of toxic chemicals.

But despite the huge economic and environmental gains that could be realized, it is unclear if the technology will be widely utilized. Because of European fears of genetically modified crops, and the control exercised over growers by a few large buyers, there is currently no engineered potato in commercial production anywhere.

The use of conventional breeding techniques to move the newfound blight-resistance gene into the few dominant commercial varieties popular in the United States is all but impossible, according to Jiang.

"We can do it by conventional breeding, but we can’t move it into the standard cultivated varieties without losing them," he says. "It is almost impossible to create another Burbank variety, for example, through conventional breeding. Your odds of getting the one gene in would be like winning the lottery."

Still, the Wisconsin group, plans to develop engineered varieties for the garden. The hope, they say, is to develop the technology that will gradually win consumer acceptance and, perhaps someday, go where no GMO has gone before.

The lead authors of the PNAS paper published today are Junqi Song of the UW-Madison department of horticulture and James M. Bradeen of the UW-Madison department of plant pathology and the U.S. Department of Agriculture’s Agricultural Research Service. Other co-authors include S. Kristine Naess and Geraldine T. Haberlach of the UW-Madison department of plant pathology and the U.S. Department of Agriculture’s Agricultural Research Service, John A. Raasch and Sandra Austin-Phillips of the UW-Madison Biotechnology Center, Susan M. Wielgus of the UW-Madison department of horticulture, Jia Liu and C. Robin Buell of the Institute for Genomic Research in Rockville, Md., and Hanhui Kuang of the department of vegetable crops at the University of California at Davis.


Terry Devitt 608-262-8282, trdevitt@facstaff.wisc.edu

CONTACT: Jiming Jiang 608-262-1878, jjiang1@wisc.edu; John Helgeson 608-262-0649, jph@plantpath.wisc.edu

Jiming Jiang | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>