Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Universities to share technologies to fight hunger in developing countries; improve domestic crops

11.07.2003


A group of leading U.S. public sector agricultural research institutions has agreed to allow access to each other’s current and future patented agricultural technologies and is exploring ways to ensure that new licensing agreements allow for technologies to be used to fight global hunger and to boost the domestic agricultural sector.

The agreement will accelerate research and development to improve staple crop varieties like rice, cassava, sorghum and potatoes essential to resource-poor farmers in developing countries who depend on small farm plots and face severe and very fundamental problems, such as poor agricultural soils, drought, plant diseases and pests. Low production is a perennial threat to resource–poor farming families and an important factor contributing to the chronic undernourishment of about 800 million people worldwide.

The agreement will also benefit the U.S. agricultural sector by speeding up research, development and commercialization of specialty crops like tomatoes, lettuce and grapes for characteristics including improved nutritional value, better disease-resistance and reduced environmental impact. These and other specialty crops, which are grown in specific regions rather than across broad areas involving tens of millions of acres like wheat and corn, are important to states’ economies.



A new initiative, the Public-Sector Intellectual Property Resource for Agriculture, or PIPRA, has been established to collaborate in managing participating institutions’ intellectual property. PIPRA will explore and encourage best practices in IP licensing that will result in greater access to agricultural inventions for subsistence and specialty crop applications. It will also establish a mechanism for information sharing so that researchers at those institutions can more easily determine what public sector-owned technologies exist, who holds the rights, and if the technology has been licensed, to whom and under what terms.

The initial participating research institutions hope to attract others so that collectively they will eventually have access to the most important current and future agricultural biotechnology patents owned by public sector institutions. A critical fact is that the public sector invented a diverse set of technologies that amounts to approximately 25 percent of the total number of agricultural biotechnology patents. This is believed to be a good indicator that the public sector can speed up research and development by making it easier for researchers to obtain "freedom to operate" – the ability to clear all intellectual property barriers, as well as regulatory and cultural constraints, and bring a new product to market – to develop new crop varieties important to developing countries and state agricultural sectors alike.

A paper outlining PIPRA appears in the July 11, 2003 issue of Science published by AAAS, the science society, and is signed by the presidents or chancellors of Cornell University, Michigan State University, North Carolina State University, Ohio State University, University of California System, University of California-Riverside, University of California-Davis, Rutgers-The State University of New Jersey, University of Florida, University of Wisconsin-Madison, Boyce Thompson Institute for Plant Research; the Rockefeller and McKnight Foundations; and the Donald Danforth Plant Science Center.

Designated representatives of each participating institution, organized in a steering committee, are developing options for PIPRA’s organization and structure. As they are working towards the articulation of a business plan, several elements of PIPRA are already under development. A database of patent and licensing information is being developed, a definition of "humanitarian use" for inclusion in licensing agreements is close to completion, and plans for pilot projects are taking shape.

The development of new crop varieties using agricultural biotechnology depends on access to multiple technologies, which are often patented or otherwise protected by intellectual property rights. Ownership of these rights is currently fragmented across many institutions in the public and private sector, which makes it difficult to identify who holds what rights to what technologies, in which countries, and to establish whether or not a new crop variety is at risk of infringing those rights. The current situation creates barriers to commercializing new staple and specialty crop varieties. PIPRA participants believe that if public sector institutions would collaborate in retaining certain rights to their agricultural technologies when licensing them to companies, and cataloguing the existence and use of agricultural intellectual property rights, that collaboration would lead to an acceleration in the development and commercialization of improved staple and specialty crops, thereby more adequately fulfilling the institutions’ public missions of providing knowledge for the benefit of the public good – as established and often required by law.

George Soule | EurekAlert!
Further information:
http://www.rockfound.org/

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>