Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biotech regulations impede crop domestication

04.04.2003


An increasing amount of genetic engineering in agriculture closely resembles the conventional crop breeding that has been done for thousands of years, and unnecessarily stringent regulation of this type of gene research is choking off its usefulness, one expert says in a new policy forum in Science.



Government regulations that lump all types of genetic engineering together, instead of making reasonable distinctions between differing technologies, is stifling research, favors the efforts of large and wealthy corporations, and does little or nothing to protect the public safety, says Steven Strauss, a professor of forest science at Oregon State University.

In a policy report to be published Friday in Science, one of the leading international journals of scientific research, Strauss argues that the time has come to dramatically reduce the level of government regulations when genetic engineering is based on "native or homologous" genes, or those commonly found within related plant species.


This could free up the energies of small companies and university scientists to produce valuable new products, continue the green revolution into new areas, and can be done with very high levels of environmental safety, he said.

"For centuries with conventional crop breeding we created plants that never before existed in nature, and no one thought twice about it," Strauss said. "Now, as it becomes increasingly easier and less expensive to map out the genomes of different crop plants, we have an opportunity to make similar and more precisely designed types of changes with genetic engineering. But the current environment of regulations and oversight is making this almost impossible for all but large, wealthy companies."

In the early days of genetic engineering, Strauss said, it was in fact more common for very unusual genes to be inserted into a plant that never would have naturally contained such a trait – for instance, a gene for herbicide resistance into a corn plant. The advent of inexpensive genomic mapping has opened many new doors, he said.

"Now, it’s much more possible to take different genetic characteristics of a grain crop, for instance, and pinpoint the traits you want to turn on or off, create different types of crops with improved characteristics," Strauss said.

"Conceptually, this is the same thing we’ve been doing on a hit-or-miss basis with conventional crop breeding for centuries," he said. "For instance, creating crops that grew faster, were more nutritious or had seedless fruits. But now we can target our goals much more specifically and achieve the types of products we’re looking for much more quickly."

When this is all being done within the same plant or closely related species, Strauss said, history suggests that it poses virtually no environmental hazard, and there’s no need to make such a dramatic distinction between crops created with conventional breeding or those created with genetic engineering.

Many of the types of traits selected for agricultural purposes, such as dwarf fruit trees, seedless fruits or male-sterile hybrids, often have little in the way of competitive survival value in a natural environment, Strauss said, and thus pose very little danger of "invading" ecosystems. But decades of work with conventional crop breeding has shown that even plants with some types of increased survival value on farms, such as improved pest tolerance, have no increased success in invading a wild ecosystem.

Right now, Strauss said, government agencies regulate all genetically modified organisms, or GMOs, pretty much the same – a plant that has been genetically engineered to grow shorter faces similar regulatory hurdles as a plant that has been genetically engineered to produce a novel protein. This ignores the widely different potential that two different GMOs may have for the risks people are genuinely concerned about – nutritional safety, invasive potential or secondary ecological impacts.

"The net effect of this stringent regulatory environment is that many incremental advances in crop research are not being pursued, and the field tests needed to determine value to farmers and society are often avoided," Strauss said. "It’s too expensive, risky and complex, especially for small companies and academic researchers."

A better approach, Strauss said in the report, would be for the USDA’s Animal and Plant Health Inspection Service to make some initial evaluations of the type of changes being done with genetic engineering and the nature of the genes being changed. They could then inject a little common sense and much less regulation into the process if it becomes clear that a project has a similar level of environmental safety to conventional crop breeding. After review, he said, some types of field tests should be exempt from further regulation.

Another effect of the current regulatory environment, Strauss argues, is to largely force out of business all but the largest and most powerful companies that can afford the costly field tests.

"Small companies and academic scientists have much they could contribute to this field, and the cumulative public benefits could be enormous, but the costs are often just too overwhelming for them," Strauss said. "We need to democratize this industry, and we need to start delivering to the public the benefits of biotechnology on a wider basis."

Strauss is an international leader in the use of genetic engineering in trees and has taught classes on biotechnology issues in society.

Steven Strauss | EurekAlert!
Further information:
http://www.orst.edu/

More articles from Agricultural and Forestry Science:

nachricht New research recovers nutrients from seafood process water
31.10.2018 | Chalmers University of Technology

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>