Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Bovine Gene Regulating Milk Production

20.02.2003


MTT Agrifood Research Finland and the University of Liège, Belgium, have worked together successfully in locating a gene that regulates total yield and protein and fat content of milk. The scientists found a variation in the growth hormone receptor gene in the bovine chromosome 20. The variation in the receptor gene is associated with a major effect on milk yield and composition in Ayrshire, Holstein and Jersey cows.



Dr Johanna Vilkki of MTT says that developing associated markers for genes that affect milk traits is not highly prioritised in breeding since it is relatively easy to improve these traits by conventional selection.

The value of the finding is scientific. This is the second time that a clear quantified association has been demonstrated between a single gene and bovine milk production. The MTT group is currently fine-mapping the genes that affect cows’ susceptibility to mastitis. This is of interest to cattle breeders, since traits sensitive to environmental effects, such as disease resistance, are difficult to improve by conventional methods, and for economic and welfare reasons the eradication of mastitis is an important goal for dairy cattle breeders.


Milk Genes Diagnosed From The Embryo

The present discovery will help breeders select bulls siring daughters with more economical milk production.

The ‘water’ version of the gene results in a 200 kg increase in annual production per cow, respectively decreasing the fat and protein content. The more cost-effective version of the gene will increase the average protein content in milk by 0.06 percentage units and the fat content by 0.15 percentage units, albeit at the expense of total milk yield. In 2002 the annual yield of the Finnish Ayrshire cow was 7,381 kg of milk with fat % of 4.36 and protein % of 3.36. According to Dr Vilkki, the vast majority of Finnish Ayrshire cattle are already carrying the more advantageous form of the gene.

The study, launched in 1999, was part of the EU biotechnology programme project EURIBDIS, in which altogether six European research groups cooperated. The sparse mapping of the entire genome of the Finnish Ayrshire, completed by MTT about two years ago, provided the basis for the present study.

MTT is a co-applicant in an international application for a patent for the use of the variation in the sequence of the growth hormone receptor gene in selection for milk-composition. There is only one comparable patent anywhere in the world, and that is also a result of work by the same international research group.

Simultaneously with the milk gene discovery, MTT’s researchers have developed a method allowing diagnosis of the gene variants from a bovine embryo biopsy. This allows the results to be immediately applied in the ASMO breeding programme, where selection is enhanced by extensive use of embryo transfer.

Johanna Vilkki | alfa

More articles from Agricultural and Forestry Science:

nachricht Researchers double sorghum grain yield to improve food supply
31.10.2019 | Cold Spring Harbor Laboratory

nachricht Game changer: New chemical keeps plants plump
25.10.2019 | University of California - Riverside

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Necessity is the mother of invention: Fraunhofer WKI tests utilization of low-value hardwood for wood fiberboard

13.11.2019 | Materials Sciences

With Mars methane mystery unsolved, curiosity serves scientists a new one: Oxygen

13.11.2019 | Physics and Astronomy

AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics

13.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>