Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New witchweed-fighting method, presented by CIMMYT and Weizmann Institute scientist

02.07.2002


Technique could dramatically diminish hunger in Africa

Corn harvests on experimental plots and in farmers’ fields in four East and Southern African countries have yielded striking results in long-term trials of an innovative witchweed-fighting technology developed by a Weizmann Institute scientist in collaboration with researchers at CIMMYT (the Spanish acronym for the International Maize and Wheat Improvement Center). The new technology will be presented to seed producers, government representatives, regional scientists and regulatory agencies at a CIMMYT-sponsored meeting in Kisumu, Kenya on July 4-6, 2002.

The meeting, entitled "A Herbicide-Resistant Maize Method for Striga Control: A Meeting to Explore the Commercial Possibilities," will demonstrate the results of the new technology in the field, present the current status of this herbicide-resistant maize technology, assess its commercial and regulatory aspects and evaluate its future. The meeting is designed to expose interested parties in the public and private sectors to a powerful new weapon that could dramatically alleviate the Striga scourge.



At the UN-sponsored World Food Summit in Rome (June 10-13), UN Secretary General Kofi Annan stated that as many as 24,000 people a day die of starvation around the world. This devastation is substantially concentrated in Africa. A major contributor to the problem is Striga hermonthica, or witchweed, a parasitic weed that ravages grain crops in several parts of the world–particularly in sub-Saharan Africa, where the weed infests approximately 20 to 40 million hectares of farmland cultivated by poor farmers and is responsible for lost yields valued at approximately $1 billion annually. An estimated 100 million farmers lose from 20 to 80 percent of their yields to this parasite. In Kenya alone it severely infests 150,000 hectares of land (76 percent of the farmland in Western Kenya), causing an estimated annual crop loss valued at $38 million.

The weed thrives by attaching itself, hypodermic-like, to the roots of a suitable host crop. It sends up a signal that says "feed me," and not only sucks up the crop’s energy, but also competes for much of its nutrients and water, while poisoning the crop with toxins and stunting its growth.

Until now, other methods to control this parasitic weed have been long-term and often impractical and, hence, have not been widely adopted by farmers. African farmers commonly remove the witchweed by hand, but by the time it emerges above ground, it has already drained the crop and done its damage. Herbicides, applied during that same post-emergence period, are also ineffective for the same reason.

Prof. Jonathan Gressel of the Weizmann Institute’s Department of Plant Sciences proposed an innovative solution to the parasitic weed problem that relies on a new use for a certain type of corn that was developed, using biotechnology, in the U.S. The corn carries a mutant gene that confers resistance to a specific herbicide, leaving the corn plant unharmed when treated with this herbicide. As an alternative to spraying entire fields, Prof. Gressel suggested that herbicide-resistant seeds be coated with the herbicide before planting. Once the crop’s plants sprout from the seeds, the parasites unwittingly devour the weed-killing chemical from the crop roots or surrounding soil and die. By the time the crop ripens, the herbicide, applied in this way at less than 1/10th the normal rate, has disappeared, leaving the food product unaffected.

Dr. Fred Kanampiu, a CIMMYT scientist based in Kenya, has tested this approach for more than ten crop seasons while CIMMYT breeders crossed the gene into African corn to produce high-yielding varieties that are resistant to major African diseases, as well as to the herbicide. Witchweed was virtually eliminated in plots planted with herbicide-coated seeds, as will be shown at the Kisumu meeting. The experiments indicate that a low-dose herbicide seed coating on resistant corn can increase yields up to four-fold in fields highly infested with witchweed. The herbicide is coated on the seed together with the fungicide-insecticide mix that is normally used in Africa to provide healthy plants. With this technology the farmer does not have to purchase spray equipment and can continue interplanting legumes between the corn plants – a common practice among smallholder African farmers.


This research was supported in part by the Canadian International Development Agency (CIDA) through the CIMMYT East Africa Cereals Program and by the Rockefeller Foundation. Initial herbicide-resistant corn seeds for breeding into CIMMYT varieties were provided by Pioneer International, USA.

Prof. Gressel holds the Gilbert de Botton Chair of Plant Sciences at the Weizmann Institute.

The Weizmann Institute of Science in Rehovot, Israel is one of the world’s foremost centers of scientific research and graduate study. Its 2,500 scientists, students, technicians and engineers pursue basic research in the quest for knowledge and to enhance the quality of human life. New ways of fighting disease and hunger, protecting the environment, and harnessing alternative sources of energy are high priorities at Weizmann.


Jeffrey J. Sussman | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Agricultural and Forestry Science:

nachricht New research recovers nutrients from seafood process water
31.10.2018 | Chalmers University of Technology

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>