Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Herbicide-Tolerant Crops Can Improve Water Quality

23.04.2008
A USDA study suggests that planting herbicide-tolerant crop varieties and using contact herbicides can reduce herbicide loss and concentrations in runoff.

The residual herbicides commonly used in the production of corn and soybean are frequently detected in rivers, streams, and reservoirs at concentrations that exceed drinking water standards in areas where these crops are extensively grown.

When these bodies of water are used as sources of drinking water this contamination can lead to increased treatment costs or a need to seek alternative sources of supply. Additionally, these herbicides can have negative effects on aquatic ecosystems at concentrations well below their drinking water standards.

When genetically modified, herbicide-tolerant, corn and soybean became commercially available in the 1990s it became possible to replace some of the problematic residual herbicides with strongly sorbed, short half-life, contact herbicides that may be more environmentally benign. By 2004 almost 90% of the soybean grown in the US was genetically modified for tolerance to the contact herbicide glyphosate (Roundup), which is currently the most widely used herbicide in the world.

In a four-year study, researchers at the USDA-ARS’s North Appalachian Experimental Watershed near Coshocton, OH compared relative losses of both herbicide types when applied at normal rates to seven small watersheds planted with Liberty-Linked corn or Roundup Ready soybean. In their report, published in the March-April issue of the Journal of Environmental Quality, soil scientists Martin Shipitalo and Lloyd Owens, and agricultural engineer Rob Malone, noted that losses of contact herbicides in surface runoff were usually much less than those for the residual herbicides, as a percentage of the amount of herbicide applied. Averaged for all soybean crop years, glyphosate loss was about one-seventh that of metribuzin and one half that of alachlor, residual herbicides it can replace. Similarly, average loss of the contact herbicide glufosinate (Liberty) was one-fourth that of atrazine, a residual corn herbicide it can replace.

More importantly, according to project leader Martin Shipitalo, “The concentrations of the contact herbicides in the runoff never exceeded their established or proposed drinking water standards while the residual herbicides frequently exceeded their standards, particularly in the first few runoff events after application”. Concentrations of atrazine in runoff were up to 240 times greater than its drinking water standard while alachlor concentrations were up to 700 times greater than its standard. Conversely, the maximum glyphosate concentration noted was nearly four times less than its standard. Glufosinate currently has no established standard, but was only detected at low concentrations and was below its detection limit 80 days after application.

In light of increased economic incentives to grow more corn and soybean for biofuel production, these results suggest to farmers and the regulatory community that herbicide losses and concentrations in runoff can be reduced by planting herbicide-tolerant varieties of these crops and replacing some of the residual herbicides with the contact herbicides compared in this study.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://jeq.scijournals.org/cgi/content/abstract/37/2/401.

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht New research recovers nutrients from seafood process water
31.10.2018 | Chalmers University of Technology

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>