Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sago starch factory effluent: salvaging a potential pollutant

23.04.2008
Sarawak is the world's largest exporter of sago, exporting up to 40,000 ton sago a year. Sago mills that produced sago starch through debarking and processing of sago trunk, generates effluent which is channelled into nearby rivers. A research conducted in UNIMAS currently looks at turning this potential pollutants into commerciable entities.

The Sago Palm (Metroxylon sagu) grows well with minimum care in swamp and peat areas otherwise inhabitable for most other crops. It has a high starch yield: one palm may yield between 150 to 300 kg of starch.

Sarawak exports up to 40,000 tons sago a-year and the effluent (sago starch factory wastewater) resulting from sago debarking and processing are often discharged to nearby rivers. This inevitably contributes to river pollution. A typical sago mill consumes about 1,000 logs per day, generating a minimum of 400 tons of slurry effluent which contains about 5% solids (20 tons).

The Biochemistry Laboratory at the Faculty of Resource Science and Technology, UNIMAS under the supervision of Professor Dr Kopli Bujang has for the past couple of years been working on exploiting the potential of the sago waste solids in the slurry effluent, looking at the possible generation of biofuel.

Although the use of sago starch is a clear possibility, the production of biofuel from a food source doest not seems appropriate especially when one is looking at the rising prices of food supply around the world. The group, therefore, have put their focus on using the sago waste solids. This not only shift the reliance away from the sago starch but also minimise the effects of environmental pollution from the sago factories.

To begin with, the research group has successfully established a complete bench-plant in campus, in preparation for the pilot-plants which are currently being constructed at Kotobuki (Japan) and Malaysia under the supervision of a Malaysian private company.

The parameters are currently being set to increase the filtration efficiency of the slurry effluent to carve the possibility of harvesting the sago fibres for production of fermentable sugars in a continuous pilot-scale level. Using an in-house modified enzymatic process, initials attempts were able to extract 20-25% of fermentable sugars from sago fibres. At the conservative conversion of 20%, it is possible to produce a minimum of 4 tons/day of fermentable sugars from the slurry effluent produce in a typical sago mill.

Two units of hydrolysers and one unit of rotating vacuum pump filter for continuous filtration of the sago effluent have been developed and constructed to enable the efficient hydrolysis of sago fibres at the pilot-scale level. These will make a convenient attachment to the pilot-plant for a maximum production of biofuel and other by-products.

One of the other by-products currently investigated is the alga Spirulina culture on the filtered sago effluent. Standard parameters have been established to allow for the culture to be harvested after 10 to 20 days. The final objective is to market this product as a source of protein and organic health supplements, adding further commercial value to a potential pollutant.

Resni Mona | ResearchSEA
Further information:
http://www.unimas.my
http://www.researchsea.com

More articles from Agricultural and Forestry Science:

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>