Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's oldest living tree discovered in Sweden

17.04.2008
The world's oldest recorded tree is a 9,550 year old spruce in the Dalarna province of Sweden. The spruce tree has shown to be a tenacious survivor that has endured by growing between erect trees and smaller bushes in pace with the dramatic climate changes over time.
For many years the spruce tree has been regarded as a relative newcomer in the Swedish mountain region. "Our results have shown the complete opposite, that the spruce is one of the oldest known trees in the mountain range," says Leif Kullman, Professor of Physical Geography at Umeå University.

A fascinating discovery was made under the crown of a spruce in Fulu Mountain in Dalarna. Scientists found four "generations" of spruce remains in the form of cones and wood produced from the highest grounds. The discovery showed trees of 375, 5,660, 9,000 and 9,550 years old and everything displayed clear signs that they have the same genetic makeup as the trees above them.

Since spruce trees can multiply with root penetrating braches, they can produce exact copies, or clones. The tree now growing above the finding place and the wood pieces dating 9,550 years have the same genetic material. The actual has been tested by carbon-14 dating at a laboratory in Miami, Florida, USA. Previously, pine trees in North America have been cited as the oldest at 4,000 to 5,000 years old.

In the Swedish mountains, from Lapland in the North to Dalarna in the South, scientists have found a cluster of around 20 spruces that are over 8,000 years old. Although summers have been colder over the past 10,000 years, these trees have survived harsh weather conditions due to their ability to push out another trunk as the other one died.

"The average increase in temperature during the summers over the past hundred years has risen one degree in the mountain areas," explains Leif Kullman. Therefore, we can now see that these spruces have begun to straighten themselves out. There is also evidence that spruces are the species that can best give us insight about climate change.

The ability of spruces to survive harsh conditions also presents other questions for researchers. Have the spruces actually migrated here during the Ice Age as seeds from the east 1,000 kilometres over the inland ice that that then covered Scandinavia?

Do they really originate from the east, as taught in schools? "My research indicates that spruces have spent winters in places west or southwest of Norway where the climate was not as harsh in order to later quickly spread northerly along the ice-free coastal strip," says Leif Kullman. "In some way they have also successfully found their way to the Swedish mountains."

The study has been carried out in cooperation with the County Administrative Boards in Jämtland and Dalarna.

For more information contact:
Leif Kullman, Professor of Physical Geography at Umeå University
Phone: +46 90-786 68 93, 070-5641848
E-mail: leif.kullman@emg.umu.se
Pressofficer Karin Wikman +46- 70 313 6124; karin.wikman@adm.umu.se

Karin WIkman | idw
Further information:
http://www.vr.se
http://expertsvar.se

More articles from Agricultural and Forestry Science:

nachricht Strengthening regional development through old growth beech forests in Europe
20.11.2019 | Hochschule für nachhaltige Entwicklung Eberswalde

nachricht Researchers double sorghum grain yield to improve food supply
31.10.2019 | Cold Spring Harbor Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>