Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Black gold agriculture' may revolutionize farming, curb global warming

11.04.2008
Fifteen hundred years ago, tribes people from the central Amazon basin mixed their soil with charcoal derived from animal bone and tree bark. Today, at the site of this charcoal deposit, scientists have found some of the richest, most fertile soil in the world.

Now this ancient, remarkably simple farming technique seems far ahead of the curve, holding promise as a carbon-negative strategy to rein in world hunger as well as greenhouse gases.

At the 235th national meeting of the American Chemical Society, scientists report that charcoal derived from heated biomass has an unprecedented ability to improve the fertility of soil — one that surpasses compost, animal manure, and other well-known soil conditioners.

They also suggest that this so-called “biochar” profoundly enhances the natural carbon seizing ability of soil. Dubbed “black gold agriculture,” scientists say this “revolutionary” farming technique can provide a cheap, straight-forward strategy to reduce greenhouse gases by trapping them in charcoal-laced soil.

“Charcoal fertilization can permanently increase soil organic matter content and improve soil quality, persisting in soil for hundreds to thousands of years,” Mingxin Guo, Ph.D., and colleagues report. In what they describe as a “new and pioneering” ACS report — the first systematic investigation of soil improvement by charcoal fertilization — Guo found that soils receiving charcoal produced from organic wastes were much looser, absorbed significantly more water and nutrients and produced higher crop biomass. The authors, with Delaware State University, say “the results demonstrate that charcoal amendment is a revolutionary approach for long-term soil quality improvement.”

Soil deterioration from depletion of organic matter is an increasingly serious global problem that contributes to hunger and malnutrition. Often a result of unsustainable farming, overuse of chemical fertilizers and drought, the main weapons to combat the problem —compost, animal manure and crop debris — decompose rapidly.

“Earth’s soil is the largest terrestrial pool of carbon,” Guo said. “In other words, most of the earth’s carbon is fixed in soil.” But if this soil is intensively cultivated by tillage and chemical fertilization, organic matter in soil will be quickly decomposed into carbon dioxide by soil microbes and released into the atmosphere, leaving the soil compacted and nutrient-poor.

Applying raw organic materials to soil only provides a temporary solution, since the applied organic matter decomposes quickly. Converting this unutilized raw material into biochar, a non-toxic and stable fertilizer, could keep carbon in the soil and out of the atmosphere, says Guo.

“Speaking in terms of fertility and productivity, the soil quality will be improved. It is a long-term effect. After you apply it once, it will be there for hundreds of years,” according to Guo. With its porous structure and high nutrient- and water-holding capabilities, biochar could become an extremely attractive option for commercial farmers and home gardeners looking for long-term soil improvement.

The researchers planted winter wheat in pots of soil in a greenhouse. Some pots were amended with two percent biochar, generated from readily available ingredients like tree leaves, corn stalk and wood chips. The other pots contained ordinary soil.

The biochar-infused soil showed vastly improved germination and growing rates compared to regular soil. Guo says that even a one-percent charcoal treatment would lead to improved crop yield.

Guo is “positive” that this ground-breaking farming technique can help feed countries with poor soil quality. “We hope this technology will be extended worldwide,” says Guo.

“The production of current arable land could be significantly improved to provide more food and fiber for the growing populations. We want to call it the second agricultural revolution, or black gold revolution!”

He suggests that charcoal production has been practiced for at least 3000 years. But until now, nobody realized that this charcoal could improve soil fertility until archaeologists stumbled on the aforementioned Amazonian soil several years ago.

Biochar production is straightforward, involving a heating process known as pyrolysis. First, organic residue such as tree leaves and wood chips is packed into a metal container and sealed. Then, through a small hole on top, the container is heated and the material burns. The raw organic matter is transformed into black charcoal. Smokes generated during pyrolysis can also be collected and cooled down to form bio-oil, a renewable energy source, says Guo.

In lieu of patenting biochar, Guo says he is most interested in extending the technology into practice as soon as possible. To that end, his colleagues at Delaware State University are investigating a standardized production procedure for biochar. They also foresee long-term field studies are needed to validate and demonstrate the technology. Guo noted that downsides of biochar include transportation costs resulting from its bulk mass and a need to develop new tools to spread the granular fertilizer over large tracts of farmland.

The researchers are about to embark on a five-year study on the effect of “black gold” on spinach, green peppers, tomatoes and other crops. They seek the long-term effects of biochar fertilization on soil carbon changes, crop productivity and its effect of the soil microorganism community.

“Through this long-term work, we will show to people that biochar fertilization will significantly change our current conventional farming concepts,” says Guo.

Charmayne Marsh | EurekAlert!
Further information:
http://www.acs.org

More articles from Agricultural and Forestry Science:

nachricht New research recovers nutrients from seafood process water
31.10.2018 | Chalmers University of Technology

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>