Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Popular Apple Variety Harbours Unusual Cell Growth

26.03.2008
A UK scientist has discovered clumps of previously-unreported callus hairs growing in the flesh of mature apples of Fuji and closely-related varieties, which may have storage implications for commercial growers.

“To find out something new about apples is really exciting”, says Dr Mary Parker of the Institute of Food Research. “Apples have been cultivated for about as long as human history and Fuji apples are particularly prized for their crispness, sweet flavour and keeping qualities “.

The variety was developed in Japan, but is widely grown in the Southern Hemisphere, China, Southern Europe and the USA. It is a cross between Ralls Janet and Red Delicious, and is itself used as a parent in breeding programmes.

“The reason these hairs have not been spotted before is probably because the full extent of their growth can only be appreciated in 3D”, says Dr Parker.

Dr Parker used light microscopy and scanning electron microscopy to reveal clumps of small, elongated and branched cells in the air spaces between cells. She named them callus hairs because of their resemblance to the cells which make up the white velvety tufts (sometimes mistaken for fungus) which develop around the seeds in some apple varieties.

The presence of callus hairs filling the airspaces of mature Fuji could account for the susceptibility of late-harvested apples to internal browning. Unrestricted gas flow through the fruit is vital for successful long-term storage particularly in modified atmospheres. Callus hair growth, with its own oxygen requirement and carbon dioxide output, may reduce the efficiency of gas transport through the spaces between cells.

“With this new knowledge, breeders could pick parent varieties with all the positive traits of Fuji apples but with less-developed callus hairs”, says Dr Parker. The presence or absence of callus hairs could also be used to test the authenticity of dried apples labelled as Fuji.

Preliminary studies have shown that callus hairs are rich in phytonutrients but may also contain allergens. Further investigations are needed to establish how growth conditions and orchard management affect the extent of callus hair development.

For more information please contact Dr Mary Parker
mary.parker@bbsrc.ac.uk 01603 255262

Zoe Dunford | alfa
Further information:
http://www.ifr.ac.uk
http://www.bbsrc.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>