Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crop scientists discover gene that controls fruit shape

14.03.2008
Crop scientists have cloned a gene that controls the shape of tomatoes, a discovery that could help unravel the mystery behind the huge morphological differences among edible fruits and vegetables, as well as provide new insight into mechanisms of plant development.

The gene, dubbed SUN, is only the second ever found to play a significant role in the elongated shape of various tomato varieties, said Esther van der Knaap, lead researcher in the study and assistant professor of horticulture and crop science at Ohio State University’s Ohio Agricultural Research and Development Center (OARDC) in Wooster.

The discovery was reported, as the cover article, in the March 14 issue of the journal Science.

One of the most diverse vegetable crops in terms of shape and size variations, tomatoes have evolved from a very small, round wild ancestor into the wide array of cultivated varieties — some large and segmented, some pear-shaped, some oval, some resembling chili peppers — available through most seed catalogs and for sale in supermarkets. However, very little is known about the genetic basis for such transformations in tomatoes, and virtually nothing has been discerned about morphological changes in other fruits and vegetables.

“Tomatoes are the model in this emerging field of fruit morphology studies,” van der Knaap pointed out. “We are trying to understand what kind of genes caused the enormous increase in fruit size and variation in fruit shape as tomatoes were domesticated. Once we know all the genes that were selected during that process, we will be able to piece together how domestication shaped the tomato fruit — and gain a better understanding of what controls the shape of other very diverse crops, such as peppers, cucumbers and gourds.”

One of the first pieces in van der Knaap’s fruit-development puzzle is SUN, which takes its name from the “Sun 1642” cultivated variety where it was found — an oval-shaped, roma-type tomato with a pointy end. The gene also turned out to be very common in elongated heirloom varieties, such as the Poblano pepper-like “Howard German” tomato.

“After looking at the entire collection of tomato germplasm we could find, we noticed that there were some varieties that had very elongated fruit shape,” van der Knaap explained. “By genetic analysis, we narrowed down the region of the genome that controls this very elongated fruit shape, and eventually narrowed down that region to a smaller section that we could sequence to find what kind of genes were present at that location.

“In doing that,” van der Knaap continued, “we identified one key candidate gene that was turned on at high levels in the tomato varieties carrying the elongated fruit type, while the gene was turned off in round fruit. And after we confirmed that observation in several other varieties, we found that this gene was always very highly expressed in varieties that carry very elongated fruit.”

Once SUN was identified, the next step involved proving whether this gene was actually responsible for causing changes in fruit shape. To do so, van der Knaap and her team conducted several plant-transformation experiments. When the SUN gene was introduced into wild, round fruit-bearing tomato plants, they ended up producing extremely elongated fruit. And when the gene was “knocked out” of elongated fruit-bearing plants, they produced round fruit similar to the wild tomatoes.

“SUN doesn’t tell us exactly how the fruit-shape phenotype is altered, but what we do know is that turning the gene on is very critical to result in elongated fruit,” van der Knaap said. “We can now move forward and ask the question: Does this same gene, or a gene that is closely related in sequence, control fruit morphology in other vegetables and fruit crops?”

Something else van der Knaap and her team found out is that SUN encodes a member of the IQ67 domain of plant proteins, called IQD12, which they determined to be sufficient — on its own — to make tomatoes elongated instead of round during the plant transformation experiments.

IQD12 belongs to a family of proteins whose discovery is relatively new in the world of biology. So new that IQD12 is only the second IQ67 protein-containing domain whose function in plants has been identified. The other one is AtIQD1, discovered in the plant model Arabidopsis thaliana, which belongs to the same family as broccoli and cabbage. In Arabidopsis, AtIQD1 increases levels of glucosinolate, a metabolite that Ohio State researchers are studying in broccoli for its possible role in inhibiting cancer (http://researchnews.osu.edu/archive/goodbroc.htm).

“Unlike AtIQD1, SUN doesn’t seem to be affecting glucosinolate levels in tomato, since these metabolites are not produced in plants of the Solanaceous family (which includes tomato, peppers, eggplant and other popular crops),” van der Knaap explained. “But there appears to be a common link between the two genes, which is that they may be regulating tryptophan levels in the plant. Thus, SUN may be telling us more about the whole process of diversification in fruits and across plant species, perhaps through its impact on plant hormones and/or secondary metabolites levels.”

In the process of identifying and cloning SUN, van der Knaap’s team was also able to trace the origin of this gene and the process by which it came to reside in the tomato genome.

Another unique characteristic of the SUN gene is that it affects fruit shape after pollination and fertilization, with the most significant morphological differences found in developing fruit five days after plant flowering. The only other fruit-shape gene previously identified — OVATE, a discovery by Cornell University plant breeder Steven Tanksley, van der Knaap’s advisor while she was a post-doctoral associate there — influences the future look of a fruit before flowering, early in the ovary development.

Esther van der Knaap | EurekAlert!
Further information:
http://www.osu.edu

More articles from Agricultural and Forestry Science:

nachricht New parsley virus discovered by Braunschweig researchers
17.05.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Franco-German research initiative on low-pesticide agriculture in Europe
16.05.2019 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>