Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Camera reveals fish quality

11.03.2008
Ekrem Misimi, a research scientist at SINTEF Fisheries and Aquaculture Research, has recently defended his doctoral thesis on accurate mathematical descriptions that enable machines to sort fish according to quality.

Misimi has combined machine vision with pattern recognition methods, and has fed geometrical descriptions of the size, colour and shape of salmon into a PC, which then grades the fish according to its quality.

“The Norwegian fish-processing industry has been slow to introduce modern technology, and the production costs of a kilo of salmon in this country are an average of 5 – 10 kroner higher than in countries that compete with us. Exports of processed salmon are also still low, so the industry has a lot to gain by adopting these new methods,” says Misimi.

Uneven quality

Today, fish are graded manually by employees who assess their shape, colour and any surface injuries, since consumers demand salmon fillets that are fresh and regular in colour and shape. This can be difficult to achieve using current technology. If the salmon was stressed at the moment of its death, it stiffens more rapidly, and when it is stored on ice its fillets change colour and shape faster than fillets taken from an unstressed fish. Stressed fillets cannot be processed until they have passed through the stage of rigor mortis after two or three days, and meanwhile the product is losing freshness.

Moreover, there may be remains of blood in the stomach cavity from when the salmon was bled. This may leave flecks of blood on fresh and smoked fillets, a common cause of downgrading.

Colour is an important indicator of the quality of salmon fillets, and at present, a special ruler and a colour-matching card are used to sort the fillets that fall within approved limits from those that have to be rejected.

Automation

The new method simply takes photos of the colour cards and stores the values obtained, so that the colour of a fillet can be compared with values from the table. This objective method agrees well with the methods that human being use to analyse colours, and is also rapid and does not require physical contact with the fish.

“Machine vision and image analysis will enable us to sort fish into “production”, “ordinary” and “superior” classes, while revealing blood in the stomach cavity, with an accuracy of 90 percent. Automation can increase productivity and raise processing rates, while companies can avoid having to establish subsidiaries abroad,” says Misimi Ekrem.

Åse Dragland

Contact: Ekrem Misimi, SINTEF Fisheries and Aquaculture Research
Tel: 00 47 982 22 467Email: ekrem.misimi@sintef.no

Aase Dragland | alfa
Further information:
http://www.sintef.com

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>