Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A common genetic mechanism discovered in nitrogen-fixing plants

10.03.2008
Some soil microorganisms are capable of forging associations with plant roots in the form of symbioses. Certain of these relationships play a highly important ecological and agronomic role.

Arbuscular mycorrhizal symbiosis (which links a plant to a fungus) thus gives plants a mechanism for improving their supply of water and mineral nutrition. This association has been in existence for 400 million years and appears to have accompanied plants in their colonization of the terrestrial environment.

At present it involves about 80% of plant species. In a more recent era, about 60 million years B. P., the symbiosis which became established between soil bacteria, Rhizobium species, and leguminous plants doted them with the ability, unique among mass-produced crop plants, to capture nutrient nitrogen from the air. Rhizobium forms specialized organs, nodules, on the plant roots. These are capable of transforming atmospheric nitrogen into ammonium that can be directly assimilated by the plant. In return, the plant supplies the microorganisms with nutrients in the form of complex carbohydrates.

Scientists have for many years been seeking to unravel the genetic mechanisms that govern such mutually beneficial relationships, on the one hand between plants and bacteria, on the other between plants and fungi. Investigations by a French team in 2000 had shown that some genetic signalling mechanisms operating in the symbiosis between leguminous plants and Rhizobium type bacteria and such plants and mycorrhizal fungi involved a common genetic element named SymRK. This type of gene was already known to operate in the recognition of Nod factors, signalling substances emitted by the Rhizobium type bacteria which are essential for root nodule formation.

The actinorhizal plants make up another category of plants which have acquired the ability to live symbiotically with a nitrogen fixing bacterium, in this case Frankia. These pioneer plant species, whose host-symbiont mechanisms remain little studied, generally colonize disturbed environments, such as volcanic soils or mining-affected ground, and nitrogen-poor terrains such as moraines or sandy soils. About 260 species of actinorhizal plants exist, spread among 24 genera and classified into eight families of angiosperms, flowering plants. An IRD team, jointly with a laboratory of the University of Munich, turned particular attention to the tropical tree Casuarina, or Australian pine. The first step employed molecular methods to find the sequence coding for the SymRK gene in the Casuarina genome. Once isolated, the question was whether or not Casuarina needed this gene to establish its symbiosis with the bacterium Frankia.

The team therefore developed transgenic plants in which SymRK gene expression was strongly reduced. Subsequent comparison of these plants’ ability to form symbiotic root nodules with that of control plants showed that the plants with lowered SymRK gene expression produced only half as many root nodules as the controls. The same modified individuals also showed strongly reduced mycorrhization compared with the unaltered Australian pine. The results therefore demonstrated that the weakened SymRK gene expression produced a considerable loss of Casuarina’s nitrogen-fixing ability and also a reduction in its aptitude to form mycorrhiza. More generally, these conclusions bring out the fact that, in nitrogen fixing plants, a common genetic factor seems essential for setting-up the three types of symbiotic association involving bacteria (Rhizobium or Frankia) or a mycorrhizal fungus.

Improved understanding of these genetic mechanisms could in the coming years contribute to the development of procedures for performing the transfer of the genetic material necessary for atmospheric nitrogen fixation to plants like cereals, which do not possess this faculty. Although rice, for example, establishes a symbiotic relation with a mycorrhizal fungus, it is incapable of developing nitrogen fixing nodules.

Modification of its genome to equip it with this ability could then open the way to considerable reduction of input of nitrogen fertilizers on this crop and thus cut down the resulting soil pollution.

Grégory Fléchet | alfa
Further information:
http://www.ird.fr/us/actualites/fiches/2008/fas288.pdf

More articles from Agricultural and Forestry Science:

nachricht A genetic map for maize
24.02.2020 | University of Delaware

nachricht Computer vision is used for boosting pest control efficacy via sterile insect technique
24.02.2020 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>