Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compost can turn agricultural soils into a carbon sink, thus protecting against climate change

25.02.2008
Applying organic fertilizers, such as those resulting from composting, to agricultural land could increase the amount of carbon stored in these soils and contribute significantly to the reduction of greenhouse gas emissions, according to new research published in a special issue of Waste Management & Research (Special issue published today by SAGE).

Carbon sequestration in soil has been recognized by the Intergovernmental Panel on Climate Change and the European Commission as one of the possible measures through which greenhouse gas emissions can be mitigated.

One estimate of the potential value of this approach – which assumed that 20% of the surface of agricultural land in the EU could be used as a sink for carbon – suggested it could constitute about 8.6% of the total EU emission-reduction objective.

“An increase of just 0.15% in organic carbon in arable soils in a country like Italy would effectively imply the sequestration of the same amount of carbon within soil that is currently released into the atmosphere in a period of one year through the use of fossil fuels,” write Enzo Favoino and Dominic Hogg, authors of the paper.

“Furthermore, increasing organic matter in soils may cause other greenhouse gas-saving effects, such as improved workability of soils, better water retention, less production and use of mineral fertilizers and pesticides, and reduced release of nitrous oxide.”

However, capitalizing on this potential climate-change mitigation measure is not a simple task. The issue is complicated by the fact that industrial farming techniques mean agriculture is actually depleting carbon from soil, thus reducing its capacity to act as a carbon sink.

According to Hogg and Favoino, this loss of carbon sink capacity is not permanent. Composting can contribute in a positive way to the twin objectives of restoring soil quality and sequestering carbon in soils. Applications of organic matter (in the form of organic fertilizers) can lead either to a build-up of soil organic carbon over time, or a reduction in the rate at which organic matter is depleted from soils. In either case, the overall quantity of organic matter in soils will be higher than using no organic fertilizer.

“What organic fertilizers can do is reverse the decline in soil organic matter that has occurred in relatively recent decades by contributing to the build-up in the stable organic fraction in soils, and having the effect, in any given year, of ensuring that more carbon is held within the soil,” they explain.

But calculating the value of this technique to climate change policies is complicated. To refine previous calculations and to take account of the positive and negative dynamics of carbon storage in soil, Favoino and Hogg modelled the dynamics of compost application and build-up balancing this with mineralization and loss through tillage.

Their results suggest that soils where manure was added have soil organic carbon levels 1.34% higher than un-amended soils, and 1.13% higher than soils amended with chemical fertilizers, over a 50-year period. “This is clearly significant given the evaluations reported above regarding carbon being lost from soils, and the increasing amount of carbon dioxide in the atmosphere,” they say.

Mithu Mukherjee | alfa
Further information:
http://www.sagepub.co.uk

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>