Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major scientific push to tackle agricultural productivity and food security in developing world

22.02.2008
£7M of new research is being launched today to tackle some of the most damaging and widespread pests, diseases and harsh environmental conditions which can devastate crop yields across the developing world.

Three out of four poor people in developing countries live in rural areas and most depend on agriculture for their livelihoods. Increasing agricultural productivity will benefit millions through higher incomes, more and cheaper food, and more jobs in both rural and urban areas.

The Biotechnology and Biological Sciences Research Council (BBSRC) and the Department for International Development (DFID) are unveiling 12 new projects as part of their flagship initiative - Sustainable Agriculture Research for International Development (SARID) - to harness the UK's world class bioscience research base to address the challenges of agriculture and food security in developing countries.

The new projects will look at how a variety of crops - from maize to coconuts, rice to bananas - respond at a molecular level to hostile factors including attack by pests and diseases as well as inclement conditions. Their findings will offer new and exciting opportunities to develop crops better able to survive and thrive in their changing environments. Such advances in crop science could revolutionise the way farmers are able to farm across the developing world and have a significant impact on reducing poverty.

Commenting on the new research, Gareth Thomas, Parliamentary Under Secretary of State for International Development and Business, Enterprise and Regulatory Reform, said: "Investing in science and research is essential to provide poor farmers with the seeds, knowledge and tools they need to make a better life for themselves. This research, bringing together UK, African and Asian scientists, has the potential to revolutionise farming in the developing world and reduce global poverty. The UK is delighted to support this initiative."

Welcoming the new research, Ian Pearson, Minister for Science and Innovation, said: "This is a true demonstration of how scientific research can help find solutions to the major challenges facing the world and improve the quality of life for millions in developing countries."

BBSRC Interim Chief Executive, Steve Visscher, said: "Bioscience research can make a vital contribution to improving sustainable agriculture across the globe. These projects will build on the world-leading research on fundamental plant science and plant disease in the UK and apply this to crops of importance in the developing world, increasing yields and helping to alleviate the suffering of millions living in poverty."

All of the projects unveiled today involve unique partnerships between UK scientists and researchers from institutions in Africa, Asia and elsewhere.

Examples include:

Halting armyworm rampage with biological pesticide - the African armyworm is a major migratory insect pest, which feeds voraciously on cereal crops. Using a radical new solution, researchers from the UK, Canada and Tanzania will investigate the use of a naturally occurring virus in armyworms with a view to using it as a biological pesticide.

Defeating witchweed famine threat - subsistence crops relied on by billions are at constant risk of attack by the noxious parasitic plant witchweed. Researchers the UK, India and Senegal are identifying ways to protect the livelihoods of some of the world's poorest farmers by developing resistant crops.

Improving food security for 500M people - Pearl millet provides food security for half a billion people in Africa and Asia. The crop is well adapted to harsh environments but climate change is threatening the predictable yields that subsistence farmers rely on. Scientists from the UK, India and Ghana will work to improve pearl millet's genetic tolerance to drought.

Fighting nematode worms with fungus - Root-knot nematodes are microscopic worms that feed on plant roots, stunting their growth and causing yield losses of US$70 billion each year. UK scientists and their Kenyan colleagues are harnessing a natural soil fungus to destroy the worms' eggs reducing damage to crops.

Reducing arsenic levels in rice - arsenic contamination of rice paddies is a major problem in many parts of Asia, caused by irrigation with arsenic contaminated groundwater, pollution resulting from base and precious metal mining and the use of municipal solid waste as fertilizer. Researchers from the UK, India, Bangladesh and China will look at types of rice which have lower take-up levels of inorganic arsenic to unravel the genetic basis for this desirable characteristic.

BBSRC and DFID announced the SARID initiative in 2006 to foster high-quality research that will contribute to achieving the Millennium Development Goals for combating the eight major problems faced by the developing world including poverty and starvation.

The research announced today is the first from this initiative. A second grant round, focussing on animal health will be announced later in 2008.

Press Office | alfa
Further information:
http://www.bbsrc.ac.uk
http://www.bbsrc.ac.uk/media/releases/2008/080221_sarid.html

More articles from Agricultural and Forestry Science:

nachricht Are cover crops negatively impacting row crops?
30.07.2020 | American Society of Agronomy

nachricht Space to grow, or grow in space -- how vertical farms could be ready to take-off
14.07.2020 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Novel approach improves graphene-based supercapacitors

03.08.2020 | Information Technology

Germany-wide rainfall measurements by utilizing the mobile network

03.08.2020 | Information Technology

Drug discovery: First rational strategy to find molecular glue degraders

03.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>