Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers scientists create high-protein corn with Third World potential

05.06.2002


A new approach without the controversial biotechnology used in GMOs



Rutgers geneticists have devised a new approach to create a more nutritious corn without employing the controversial biotechnology used in genetically modified foods. Instead of adding foreign DNA to the corn, the researchers increased the plant’s ability to produce more of its own naturally occurring protein by adjusting the genetic signals that control the process. The result is a more nutritious and natural food that eliminates the need for dietary supplements or chemical additives.

Jinsheng Lai, research associate at Rutgers’ Waksman Institute of Microbiology, and Joachim Messing, professor and director of the institute, presented their findings in the current issue of The Plant Journal (volume 30, number 4, May 2002). In the course of their work, the Waksman scientists employed technical expertise that few other academic laboratories possess.


Lai and Messing increased the level of the corn’s amino acid methionine, a common building block of protein, but one that the body cannot manufacture by itself. "Since our own body cannot synthesize certain amino acids such as methionine, we need to take it in through food. If we don’t," said Messing, "then we die."

In an overly protein-rich diet such as most Americans consume, this is not a problem. "However, for the poor kids in Bolivia and elsewhere, steak and chicken are rarely on the table," Messing continued. "Their dietary staple is corn and little else. With our discovery, there is now an opportunity for them to get the protein necessary to ensure their health."

Messing explained that the researchers enabled the corn to make more of its own methionine by first isolating the gene for methionine and then adjusting the signaling sequences that flank it. "It still makes the same protein as before, but we changed the dials left and right of it a little bit, turning them up to increase the amount of protein made," he said. Messing stressed that this is not the same as producing a genetically modified organism or GMO, in which scientists insert a gene that is not native to the plant. A patent is currently pending on the new corn.

The first test application of the methionine-enhanced corn was in chicken feed. Formulation for chicken feed is very expensive, employing corn, soybean and synthetic methionine. The new corn successfully replaced the synthetic additive and resulted in normal healthy chickens. Messing contends that in addition to the nutritional benefits to corn-dependent Third World diets, the poultry industry could see an annual cost saving of about a billion dollars if it eliminates synthetic additives from chicken feed.

"Over and above the improvement of people’s diets, there are benefits to using a protein that the organism naturally makes," stated Messing. "People have already been eating it for years, and they already know it is safe."

Joseph Blumberg | EurekAlert

More articles from Agricultural and Forestry Science:

nachricht Back to Nature: Palm oil plantations are being turned back into protected rainforest
21.03.2019 | Forschungsverbund Berlin e.V.

nachricht The inner struggle of the evening primrose: Chloroplasts are caught up in an evolutionary arms race
14.03.2019 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>