Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eat up all of your Brussels sprouts - unless you're an aphid

08.02.2008
Aphids that eat Brussels sprouts are smaller than normal and live in undersized populations, which has a negative knock-on effect up the food chain according to new research published today (8 February) in Science.

The study shows for the first time that the nutritional quality of plant food sources for herbivores has a far-reaching impact on an ecosystem as a whole, potentially impeding important functions that the ecosystem performs, such as the natural predation and control of agricultural pests.

The scientists compared aphids living on sprouts to aphids living on wild cabbages in a field experiment which took place on a farm in theNetherlands. They could see that the sprouts were of a lower nutritional value for aphids than the cabbages, because the aphids feeding on them were smaller in size, and the number of aphids living on them was fewer.

They then traced the effects up through the food chain to discover that the implications of poor nutritional quality in plants spread throughout the extended network of feeding relationships in an ecosystem known as a food web. This means that the sprouts affect not only the herbivore aphids that eat them, but also the primary parasitoid wasp predators that mummify and eat the aphids, and the secondary parasitoid wasps that in turn eat the primary parasitoid wasps.

The scientific team made this discovery by analysing the food webs associated with both types of plants. They found that food webs based on sprout-eating aphids are less complex and involve a less diverse network of predators than those food webs based on higher quality plants like wild cabbage.

This is because larger, cabbage-eating aphids produce larger primary parasitoid predators, which in turn attract more of the opportunistic generalist feeders among the secondary parasitoids, leading to a greater diversity of species and complexity in the ecosystem. This shows that plant quality indirectly influences the foraging decisions taken by individuals higher up the food chain which ultimately determines the structure of the food web.

One of the paper's authors, Dr Frank Van Veen from Imperial College London's NERC Centre for Population Biology, explains why this is important:

"The diversity and complexity of food webs have long been seen as good indicators of how well an ecosystem is functioning, and how stable it is, but until now we had very little idea of the processes that determine diversity and complexity. Our study has shown that changing just one element, in this case plant quality, leads to a cascade of effects that impact on predators across the food web.

"If we are to predict how environmental change is going to affect ecosystems and the functions they perform, an important part of the puzzle is to understand the mechanisms by which an effect on one species propagates through the complex network of interacting species that make up an ecosystem."

Dr Van Veen adds that their research has no implications for human sprout consumption: "Our aphid study certainly does not mean sprouts aren't good for humans to eat - our nutritional requirements differ enormously from those of insects."

The research was jointly led by scientists at Wageningen University in the Netherlands and Imperial College London, and was funded by the Netherlands Organisation for Scientific Research (NWO) and the UK Natural Environment Research Council.

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Sustainable forest management contributes more to climate protection than forest wilderness
07.02.2020 | Max-Planck-Institut für Biogeochemie

nachricht Microscopic partners could help plants survive stressful environments
30.01.2020 | Washington State University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Movement of a liquid droplet generates over 5 volts of electricity

18.02.2020 | Power and Electrical Engineering

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor

18.02.2020 | Information Technology

Studying electrons, bridging two realms of physics: connecting solids and soft matter

18.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>