Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapidly cooling eggs can double shelf life, decrease risk of illness

12.06.2012
Taking just a few seconds to cool freshly laid eggs would add weeks to their shelf life, according to a Purdue University study.

The rapid-cooling process, developed by Kevin Keener, a professor of food science, uses liquid carbon dioxide to stabilize the proteins in egg whites so much that they could be rated AA ¨l the highest grade for eggs ¨l for 12 weeks. Earlier research showed that the same cooling technology could significantly reduce occurrences of salmonella illnesses.

Eggs cooled under current methods lose the AA grade in about six weeks, Keener said.

"There is no statistical difference in quality between eggs as measured by Haugh units just after laying and rapidly cooled eggs at 12 weeks," he said. "This rapid-cooling process can provide a significant extension in the shelf life of eggs compared to traditional processing."

Haugh units measure an egg white's protein quality.

Keener's results, published in the journal Poultry Science, also show that membranes surrounding the eggs' yolks were maintained for 12 weeks when eggs were rapidly cooled. That membrane is a barrier that keeps harmful bacteria from reaching the yolk, a nutrient-rich reservoir that bacteria could use as a food source.

"The structural integrity of the yolk membrane stays strong longer, which may provide a food safety benefit," he said. "The membrane being stronger would be another defense against bacterial invasion, such as salmonella."

The rapid-cooling technology takes liquid carbon dioxide and turns it into a "snow" to rapidly lower the eggs' temperature. Eggs are placed in a cooling chamber and carbon dioxide gas at about minus 110 degrees Fahrenheit is generated. The cold gas is circulated around the eggs and forms a thin layer of ice inside the eggshell. After treatment, the ice layer melts and quickly lowers an egg's internal temperature to below 45 degrees, the temperature at which salmonella can no longer grow.

Keener's previous research showed that the carbon dioxide in bicarbonate form significantly increases the activity of lysozyme, an enzyme in the egg white that has bactericidal properties.

Traditionally, eggs are at more than 100 degrees when placed into a carton. Thirty dozen eggs are then packed in a case, and 30 cases are stacked onto pallets and placed in refrigerated coolers. The eggs in the middle of the pallet can take up to 142 hours - nearly six days - to cool to 45 degrees, Keener said.

Keener said a 2005 U.S. government report showed that if eggs were cooled and stored at 45 degrees within 12 hours of laying, there would be about 100,000 fewer salmonella illnesses from eggs in the nation each year.

Rapid cooling could also increase the ability to export eggs to places where this isn't possible today.

"You could send eggs anywhere in the world if you could get even eight weeks of shelf life at AA quality. We're seeing 12 weeks," Keener said. "Right now, you can't ship eggs anywhere in the world and expect to retain that quality."

Keener said with additional funding he would continue to study the benefits of rapid cooling, including inoculating the inside of shell eggs with Salmonella and examining how other proteins in the whites and yolks of eggs are affected.

Keener is a technical consultant to the American Egg Board and a member of the United Egg Producers Scientific Advisory Panel. His work was funded by Purdue and gift funds.

PHOTO CAPTION:

Kevin Keener developed a rapid egg cooling system that uses circulated carbon dioxide to create a thin layer of ice inside an egg's shell that cools the inside of an egg within minutes, strengthening proteins and increasing shelf life. (Purdue Agricultural Communication file photo/Keith Robinson)

A publication-quality file photo is available at http://news.uns.purdue.edu/images/2010/keener-eggs.jpg

VIDEO:

Kevin Keener discusses the rapid egg cooling system.

http://www.youtube.com/watch?v=CaW8KIOPj5s&feature=youtu.be

http://youtu.be/CaW8KIOPj5s

Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2012/120611KeenerCooled.html

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Goldilocks principle in biology -- fine-tuning the 'just right' signal load
15.10.2018 | Aarhus University

nachricht Food for the city – from the city
03.09.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

Physics: Not everything is where it seems to be

15.10.2018 | Physics and Astronomy

Microfluidic molecular exchanger helps control therapeutic cell manufacturing

15.10.2018 | Life Sciences

Link between Gut Flora and Multiple Sclerosis Discovered

15.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>