Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protecting the sustainability of UK wheat production

22.02.2011
Scientists at The University of Nottingham are to play a key role in a new seven million pound research programme to help maintain the world’s production of wheat - by increasing the diversity of traits available in wheat via a comprehensive pre-breeding programme. It will be the first study of its kind in the UK for 20 years.

At a time when the world is facing a growing global population and environmental change the project will be important to ensure the sustainability of wheat production in the UK and beyond.

To meet this challenge the Biotechnology and Biological Sciences Research Council (BBSRC) has brought together a consortium of the UK’s leading scientists in wheat genetics and trait analysis to underpin and enhance wheat breeding activities here in the UK and internationally. The foundation of the programme is based upon three areas of research to generate new diverse genetic variation.

Experts in the School of Biosciences will form part of this nationwide consortium involving the John Innes Centre, the University of Bristol, the National Institute of Agricultural Botany (NIAB) and Rothamsted Research.

Wheat breeders in the UK and throughout the world are working on new varieties that can meet the challenges of food production in the 21stt century. However, due to modern breeding practises there is not sufficient genetic variation in modern wheat varieties to obtain the increases in yield required to meet demand, climate change or environmental requirements - such as heat and drought tolerance, water use efficiency and nutrient use efficiency. The introduction of new genetic variation into wheat, for breeders to exploit, is therefore of critical importance for global food production.

Ian King, Professor of Cereal Genomics in the Department of Plant and Crop Sciences, said: “The world’s population is set to increase from seven to nine billion by 2040 to 2050 and it is predicted that we will have to produce 70 per cent more food than we do at present - just to maintain our present level of nutrition - which already includes one billion malnourished people and a further 100 million at near starvation level.

“Eleven per cent of the earth’s surface is presently used for crop production, with a further 22 per cent used for grazing animals. Of the remainder of the earth’s surface only an additional 10 per cent is suitable for relatively low levels of production. Thus the increase in food production needs to be generated from the same amount of land area that we already farm. One way for this to be achieved is through the production of new high yielding plant varieties that are adapted to global warming and environmentally friendly farming practises that result in less pollution (e.g. reduced fertiliser input).”

Six hundred million tonnes of wheat is produced every year – it is second only to rice in total tonnage used for food in the world. Wheat breeders require genetic variations for target traits, such as resistance to disease to develop new superior high yielding adapted wheat varieties.

One of these areas of research is being led by the husband and wife team of Professor Ian and Dr Julie King. Professor and Dr King are world leaders in transferring genetic variation and diversity into crop species from their distant relatives. Their main emphasis will be in transferring variation into wheat from a large number of its distant relatives including species such as cultivated rye and Thinopyrum bessarabicum, a species which grows in sand dunes and is highly salt tolerant. The wild relatives of wheat are of particular importance as they provide a vast and largely untapped source of genetic variation for most if not all agronomically important traits.

Dr John Foulkes, Associate Professor of Crop Science in the Department of Plant and Crop Sciences, and an expert in the physiological and genetic analysis of yield potential and resource-use efficiency traits in wheat and Dr Erik Murchie, a lecturer in crop physiology, will be looking at biomass production and nutrient use efficiency - how to increase biomass productivity and the amount of grain yield that plants produce for each kilo of nutrient available to the plant.

Dr Foulkes said: “In collaboration with colleagues at Rothamsted Research, our research will screen a wide range of novel wheat genetic resources developed within the Consortium in field experiments to identify lines with enhanced biomass and provide understanding of the biological basis of the key traits underlying genetic variation in biomass, e.g. light interception and photosynthetic efficiency. High wheat yields are currently dependent on large inputs of fertilizer nitrogen, which is expensive, and contributes greenhouse gas emissions associated with global warming impact. Developing wheat lines which give high yields with reduced nitrogen fertilizer inputs is therefore a priority.”

The consortium will also be working with collaborators throughout the world in India, Australia, the US, France and Mexico.

Dr Celia Caulcott, Director of Innovation and Skills, BBSRC said: “We are delighted that this group of researchers has considered at the earliest point how to ensure that opportunities are immediately taken to translate their work into products that have both social and economic impact in the UK. Having the lines of communication firmly established at this stage offers a great vehicle for exchange of knowledge, ideas and technology as this project progresses.”

The University of Nottingham has a broad research portfolio but has also identified and badged 13 research priority groups in which a concentration of expertise, collaboration and resources create significant critical mass.

Key research areas at Nottingham include energy, drug discovery, global food security, biomedical imaging, advanced manufacturing, integrating global society, operations in a digital world, and science, technology & society. Through these groups, Nottingham researchers will continue to make a major impact on global challenges.

Lindsay Brooke | alfa
Further information:
http://www.nottingham.ac.uk
http://www.nottingham.ac.uk/news/pressreleases/2011/february/wheatsustainability.aspx

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>