Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powered By Olive Stones? Turning Waste Stones Into Fuel

30.10.2008
Olive stones can be turned into bioethanol, a renewable fuel that can be produced from plant matter and used as an alternative to petrol or diesel.

This gives the olive processing industry an opportunity to make valuable use of 4 million tonnes of waste in olive stones it generates every year and sets a precedent for the recycling of waste products as fuels.

Researchers from the Universities of Jaén and Granada in Spain show how this can be achieved in a study published in the latest edition of the Society of Chemical Industry’s (SCI) Journal of Chemical Technology & Biotechnology.

“The low cost of transporting and transforming olives stones make them attractive for biofuels,” says researcher Sebastián Sánchez.

Bioethanol is increasingly used in cars, but its production from food crops such as corn is controversial because it uses valuable land resources and threatens food security. In addition, it makes use of only a small part of the whole crop. By contrast, extracting energy from olive stones uses food industry by-products.

The olive stone, produced in processing of olive oil and table olives, makes up around a quarter of the total fruit. It is rich in polysaccharides (cellulose and hemicellulose) that can be broken down into sugar and then fermented to produce ethanol.

“This research raises the possibility of using of olive stones, which would otherwise be wasted, in producing energy. In this way we can make use of the whole food crop,” says Sánchez.

The team pre-treated olive stones using high-pressure hot water (essentially a pressure cooker) then added enzymes which degrade plant matter and generate sugars. The hydrolysate obtained from this process was then fermented with yeasts to produce ethanol. Yields of 5.7kg of ethanol per 100kg of olive stones have been reached,

The quantities of stones produced are relatively small in comparison with other agricultural and forestry wastes. However, if similar principles were employed across all agricultural industries, energy gains would be significant.

Jennifer Beal | alfa
Further information:
http://www.interscience.wiley.com/jctb

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Physicists found a correlation between the structure and magnetic properties of ceramics

18.12.2018 | Physics and Astronomy

Unique insights into an exotic matter state

18.12.2018 | Physics and Astronomy

Physicists studied the influence of magnetic field on thin film structures

18.12.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>