Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Hormone Makes Space Farming a Possibility

17.10.2018

With scarce nutrients and weak gravity, growing potatoes on the Moon or on other planets seems unimaginable. But the plant hormone strigolactone could make it possible, plant biologists from the University of Zurich have shown. The hormone supports the symbiosis between fungi and plant roots, thus encouraging plants’ growth – even under the challenging conditions found in space.

The idea has been bounced around for a while now – and not just by the likes of NASA, but also by private entrepreneurs such as Jeff Bezos and Elon Musk: that of one day establishing colonies for people to live on the Moon or on other planets.


Such visions, as well as the prospect of long-term human space expeditions in the future, raise the question of how to sustainably provide food for the people in space. One possible answer is to cultivate crops in situ.

However, the soils on the Moon and on other planets are surely lower in nutrients compared to our agricultural land. The alternative – transporting nutrient-rich soil and fertilizers up into space – comes with a high economic and ecological cost.

Plant-fungal symbiosis promotes plant growth

When looking for a possible solution, the research group working with Lorenzo Borghi of the University of Zurich and Marcel Egli of the Lucerne University of Applied Sciences and Arts concentrated on the process of mycorrhiza, a symbiotic association between fungi and plant roots.

In this symbiosis, the fungal hyphae supply the plant roots with additional water, nitrogen, phosphates and trace elements from the ground. In return they get access to sugar and fat produced by the plant. This symbiosis is stimulated by hormones of the strigolactone family, which most plants secrete into the soil around their roots. The process of mycorrhization can greatly increase plant growth and thereby substantially improve crop yields – especially in soil that is low in nutrients.

Absence of gravity impedes mycorrhization

In space, cultivated plants would not just have to contend with low-nutrient soil, but also with conditions of microgravity, i.e. almost zero gravity. In order to investigate the influence of such an environment on plant growth, the researchers cultivated petunias and mycorrhizal fungi under simulated low gravity conditions. Petunias provide a model organism for plants of the nightshade family (Solanaceae), which include for example tomatoes, potatoes and eggplants.

The experiments revealed that microgravity hindered the mycorrhization and thus reduced the petunias’ uptake of nutrients from the soil. But the plant hormone strigolactone can counteract this negative effect. Plants that secreted high levels of strigolactone and fungi which the researchers had treated with a synthetic strigolactone hormone were able to thrive in the low-nutrient soil despite the microgravity conditions.

Best practice for food production in space

“In order to get crops such as tomatoes and potatoes to grow in the challenging conditions of space, it is necessary to encourage the formation of mycorrhiza,” summarizes research leader Lorenzo Borghi. “This seems to be possible using the strigolactone hormone. Our findings may therefore pave the way for the successful cultivation in space of the types of plants that we grow on Earth.”

Wissenschaftliche Ansprechpartner:

Dr. Lorenzo Borghi
Department of Plant and Microbial Biology
University of Zurich
Phone 41 44 634 82 76
E-mail: lorenzo.borghi@uzh.ch

Originalpublikation:

Guowei Liu, Daniel Bollier, Christian Gübeli, Noemi Peter, Peter Arnold, Marcel Egli, Lorenzo Borghi. Simulated microgravity and the antagonistic influence of strigolactone on plant nutrient uptake in low nutrient conditions. Nature Microgravity. October 17, 2018.
DOI: 10.1038/s41526-018-0054-z

Weitere Informationen:

https://www.media.uzh.ch/en/Press-Releases/2018/Space-Farming.html

Rita Ziegler | Universität Zürich

Further reports about: Farming Space crops cultivate crops fungi gravity hormone microgravity mycorrhiza petunias potatoes zero gravity

More articles from Agricultural and Forestry Science:

nachricht Giving a chip about masa
18.07.2019 | American Society of Agronomy

nachricht Global farming trends threaten food security
11.07.2019 | Martin-Luther-Universität Halle-Wittenberg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Hidden dynamics detected in neuronal networks

23.07.2019 | Life Sciences

Towards a light driven molecular assembler

23.07.2019 | Life Sciences

A torque on conventional magnetic wisdom

23.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>