Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant communities produce greater yield than monocultures

16.10.2014

Diverse plant communities are more successful and enable higher crop yields than pure monocultures, a European research team headed by ecologists from the University of Zurich has discovered. The scientists are convinced that the cultivation of crop mixtures in agriculture and forestry will play a key role in food safety in the future.

Although monocultures can be cultivated efficiently, they are anything but sustainable: environmental damage to soil and water caused by monoculture cultivation is becoming increasingly evident. Despite their disadvantages, however, monocultures remain the principal crop form and are regarded as the sole possibility of achieving higher yields in plant production – quite wrongfully, finds Bernhard Schmid, an ecology professor at the University of Zurich, who advocates a novel form of agriculture and forestry.

After all, a new study carried out by PhD student Debra Zuppinger Dingley reveals that in grassland plants the yields of diverse plant communities are larger than those of monocultures.

Schmid sees “an opportunity for the future of nutrition for humankind in the untapped potential of biodiversity” – a promising prospect as the OECD and the United Nations’ Food and Agriculture Organization (FAO) are giving off worrying signals: Both organizations predict that agricultural productivity will rise less steeply in future than has been the case thus far. With a global population that is also on the increase, this would signify a decline in food safety.

Diverse plant communities use resources more effectively
In a 10-year study, a team of researchers from Switzerland, Germany and the Netherlands headed by Schmid examined the yields from grassland plants which they had cultivated in monocultures or mixed plant communities. Surprisingly, the latter proved to be more productive than the monocultures. “Due to their diversity, plant species in communities occupy all the niches available in an ecosystem. This enables them to use soil nutrients, light and water far more effectively than monocultures, which ultimately leads to greater yields,” explains Dan Flynn, a postdoc in Schmid’s group.

Another advantage: There is less pressure from parasites on plants in diverse communities than on those in monocultures. In other words, a parasite can spread less effectively as it is unable to find its special host plant as easily in a biodiverse plant world. The different plant species thus act as protective shields for each other. This mutual protection within the group enables individual plants to invest the resources available into growth and the production of offspring instead of pest control. “Diversity offers protection against pests and is a prerequisite for higher yields in plant communities,” says Schmid.

Plant species evolve with each other
Moreover, the researchers discovered that species adapt to their plant communities in the time of a few generations. This so-called short-term evolution leads to a continued increase of crop yield in mixtures – a possibility that, according to Schmid, was unexpected in both basic research and plant cultivation. In this adaptation process, the various species specialize in their strengths and thus improve the complementary utilization of resources throughout the plant community by a process called character displacement. Grasses, for instance, develop thicker leaves, which are able to utilize the direct sunlight in the upper layer of a meadow while clover species sprout larger but thinner leaves to absorb the weaker light close to the ground more effectively.

Paving the way for sustainable agriculture and forestry
Today, biodiversity is primarily associated with pure conservation, the preservation of species and genetic diversity. “The research results reveal that diversity enables the functionality of the ecosystems to be stabilized at a high level in the course of time and in different environments,” concludes Schmid. He is convinced that the results published in the science journal Nature, coupled with the findings from his earlier research projects, can trigger a paradigm shift in agriculture in the long run. After all, the positive effects of mixed crops are not just evident in plant communities like meadows and forests, but also in the mixed cultivation of different varieties or genotypes of a single crop such as wheat.

“Plant breeding and cultivation methods should therefore be geared towards mixtures instead of improving the output of monocultures,” says the ecologist from UZH. The fact that more sustainable farming will also be promoted in the process because mixtures require less pest control and utilize fertilizers more effectively is a welcome bonus.

Literature:
Debra Zuppinger-Dingley, Bernhard Schmid, Jana S. Petermann, Varuna Yadav, Gerlinde B. De Deyn, Dan F. B. Flynn. Selection for niche differentiation in plant communities increases biodiversity effects. doi: 10.1038/nature13869

Simon L. Zeller, Olena Kalinina, Dan F. B. Flynn, Bernhard Schmid, Mixtures of genetically modified wheat lines outperform monocultures. Ecological Applications, 22(6), 2012, pp. 1817–1826


Contact:
Prof. Bernhard Schmid
Institute of Evolutionary Biology and Environmental Studies
University of Zurich
Tel.: +41 79 681 99 36
Email: bernhard.schmid@ieu.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

More articles from Agricultural and Forestry Science:

nachricht Microalgae food for honey bees
12.05.2020 | US Department of Agriculture - Agricultural Research Service

nachricht Global trade in soy has major implications for the climate
07.05.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Why developing nerve cells can take a wrong turn

04.06.2020 | Life Sciences

The broken mirror: Can parity violation in molecules finally be measured?

04.06.2020 | Physics and Astronomy

Innocent and highly oxidizing

04.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>