Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patterns of Ancient Croplands Give Insight Into Early Hawaiian Society

18.05.2011
A pattern of earthen berms, spread across a northern peninsula of the big island of Hawaii, is providing archeologists with clues to exactly how residents farmed in paradise long before Europeans arrived at the islands.

The findings suggest that simple, practical decisions made by individual households were eventually adopted by the ruling class as a means to improve agricultural productivity.

The research was reported in the latest issue of the journal Proceedings of the National Academy of Sciences.

“Archeologically, this kind of research is really hard to do in most places since there is rarely a ‘signature’ for the agricultural activity, or a strong connection between the remains of a house and a plot of farmland,” explained, Julie Field, an assistant professor of anthropology at Ohio State University.

Field, along with colleagues from California and New Zealand, has spent three field seasons unearthing the remnants of an agricultural gridwork that dates back nearly 600 years. The pattern was formed by a series of earthen walls, or berms, which served as windbreaks, protecting the crops.

“In this part of Hawaii, the trade winds blow all the time, so the berms are there to protect the crops from the winds,” she said. “The main crop was sweet potato which likes dry loose soil. The berms protect the soil from being blown away.”

The researchers are familiar with the challenges the winds posed. Field said that while they were excavating sites, the wind would “blow so hard, the skin would come off our ears if they weren’t covered. It just sandblasts your ears and you have to wear goggles to see.”

“It is an intense place to work,” she said.

Previous work by other researchers has radiocarbon dated organic material found in the berms, establishing a timeline for when the agricultural system was first built. Over time, more walls were built, subdividing the original agricultural plots into smaller and smaller parcels.

At the same time, other researchers were able to date materials from household sites of the early Hawaiians, and link those dates to the building of specific agricultural plots.

This showed that individual households that farmed the land expanded over time and then separated into new households as the population grew.

“Within a 300-year period, 1,400 AD to 1,700 AD, the data suggests that the population at least quadrupled, as did the number of houses,” Field said.

The researchers believe the data also provides insight into the structure of Hawaiian society at the time. “We know that there was a single chief for each district and a series of lesser chiefs below that,” she said.

Similar to the feudal system of Europe, a portion of the crop surplus was always designated for the chiefs.

“This suggests to us that the field system was originally put in place probably by individual households that produced crops for their own consumption.

“It was then appropriated by the chiefs and turned into more of a surplus production system, where they demanded that the land be put into production and more people would produce more surplus food,” she said.

“Our study is unique in that we can trace the activities of very, very small groups of people and, from that, try to glean the larger processes of society,” Field said.

“We want to look at parts of Hawaii and treat them as a model for the evolution of Hawaiian society.”

The researchers said that the next question is whether the field system was used seasonally, whether they modified it over the year and used different parts of it depending on the season.

“That’s what it looks like happened, but we need more dating of different features at the sites to be able to figure that out,” Field said.

The National Science Foundation provided support for the project. Along with Field, Patrick Kirch of the University of California, Berkeley, Thegn Ladefoged of the University of Auckland, New Zealand, Shripad Tuljapurkar and Peter Vitousek of Stanford University, and Oliver Chadwick of the University of California, Santa Barbara, worked on the project.

Contact: Julie Field, (614) 292-6233; field.59@osu.edu
Written by Earle Holland, (614) 292-8384: Holland.8@osu.edu

Earle Holland | Newswise Science News
Further information:
http://www.osu.edu

More articles from Agricultural and Forestry Science:

nachricht Food for the city – from the city
03.09.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht How the forest copes with the summer heat
29.08.2018 | Universität Basel

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>