Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen Fertilizers' Impact on Lawn Soils

08.11.2011
Nitrogen fertilizers from farm fields often end up in aquatic ecosystems, resulting in water quality problems, such as toxic algae and underwater ‘dead zones’.

There are concerns that fertilizers used on lawns may also contribute to these problems. All of the lawns in the United States cover an area almost as large as Florida, making turfgrass our largest ‘crop’ and lawn fertilizer use a legitimate issue.

In a study funded by the National Science Foundation Ecosystem Studies and Long Term Ecological Research programs, researchers from Cornell University and the Cary Institute of Ecosystem Studies have utilized recent technological advances to measure gaseous nitrogen emissions in home lawns.

In the past, scientists have conducted nitrogen input-output studies on lawns to determine how much nitrogen is taken up by vegetation or deposited in soils, and how much is lost. These studies have rarely provided any accurate data, and the ‘missing’ nitrogen has usually been attributed to denitrification, a process that removes nitrogen from soils by converting nitrate into nitrogen gas.

High soil moisture, low soil oxygen, and sufficient nitrogen availability are all factors that lead to denitrification, which occurs mostly in small areas during brief time periods. This makes it hard to pinpoint peak activity, and measure the process outside of the lab. Additionally, because there is so much nitrogen gas in our atmosphere, it has been difficult for researchers to detect the nitrogen gas produced by denitrification.

In this study, researchers overcame these challenges to measure rates of denitrification from residential lawns in Baltimore, MD. They found that denitrification is an important pathway for removing excess nitrogen from lawns. Nitrogen removals by denitrification were equivalent to 15% of annual fertilizer inputs to the study lawns. The majority of this nitrogen removal occurred over a small time period when soil conditions were favorable to high rates of denitrification. While small amounts of nitrogen were transported to groundwater and streams, the majority of fertilizer nitrogen inputs were retained in lawn soils.

The results from this study are encouraging, but much more work needs to be done to apply the results to a wider range of soil, climatic, and lawn management conditions. While most of the nitrogen losses from denitrification were in the form of nitrogen gas, the results suggest the possibility of significant losses as nitrous oxide, a greenhouse gas more potent than carbon dioxide. Continuing excessive fertilizer applications will likely saturate soil storage capacity, resulting in the harmful transfer of nitrogen to surface and ground water.

The complete results from this study can be found in the November/December issue of Journal of Environmental Quality.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.soils.org/publications/jeq/abstracts/40/6/1932

The Journal of Environmental Quality is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

James Giese | Newswise Science News
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>