Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NDSU Prof Develops 3-D Model for How Plants Drink

14.11.2008
Accurately predicting whether plant root systems will sip, slurp or gulp water as if through a straw, a hose or a pipe, could greatly assist in implementing modern agro-ecosystem practices.

Mario Biondini, professor in the School of Natural Resource Sciences at North Dakota State University (NDSU), Fargo, has developed a three-dimensional model that helps determine how much water plant root systems will absorb. Biondini has been invited to discuss his research at the semi-annual meeting of The Council of Scientific Society Presidents Dec. 6 to 9, 2008, in Washington, D.C.

In a global economy where scarcity of water can impact agricultural yields of crops to feed the world, Professor Biondini’s research offers additional insights on more accurately predicting how much water plants absorb through their root systems. Biondini’s research improves upon what is known as the West, Brown, and Enquist (WBE) model for scaling laws in biological networks. The WBE model predicts how closed systems will uptake water. Although it is useful to evaluate closed systems, the WBE model does not offer an optimum way to predict water uptake in open systems such as plant root systems.

In his research, Biondini used data from 1,759 plants in 77 herbaceous plant species to test his model. Such modeling includes taking into account the resistance to water flow inside the root system (longitudinal flow), as well as the water coming into the root system (transversal flow). As the model was developed, Biondini included soil type and drainage patterns. The Biondini model uses a simple root system while still illustrating the flow dynamics of a complete root network.

An accurate model such as the one developed by Biondini provides an important tool for consideration in sustainable agricultural practices. The 3-D model simulates interactions among plants and soil systems. The model 3DMIPS is used to investigate links between biological diversity, nutrient cycling, nutrient retention, water quality, productivity, stability and sustainability of natural and managed ecosystems.

Biondini used NDSU’s Center for High Performance Computing (CHPC) in the development of his model. “CHPC resources have been invaluable since implementations of the model required large memory and disc storage as well as high execution speeds for both its three-dimensional nature and the fine spatial grain needed to model water and nutrient flows at the root surface level,” Biondini said.

Funding for Biondini’s research was provided by the United States Department of Agriculture’s Cooperative State Research, Education, and Extension Service (CSREES) National Research Initiative (NRI).

Biondini received his bachelor’s degree in agronomy from the Universidad Nacional del Sur, Bahia Blanca, Argentina; his master’s degree in range ecology-systems analysis from Texas Tech University, Lubbock, Texas; and his Ph.D. in range ecosystems science-statistics from Colorado State University, Fort Collins, Colo. He joined NDSU in 1986. Biondini has been recipient of the NDSU College of Agriculture Award for Excellence in Research – Early Career, the NDSU College of Agriculture, Food Systems and Natural Resources Eugene R. Dahl Excellence in Research Award – Senior Career, and the NDSU Fred Waldron Award for Outstanding Research.

About NDSU
With a reputation for excellence in teaching and multidisciplinary research, North Dakota State University, Fargo, links academics to real world opportunities. As a metropolitan land grant institution with more than 13,000 students, NDSU is listed in the top 100 of several National Science Foundation annual research expenditure rankings in the areas of chemistry, physical sciences, agricultural sciences and social sciences. Out of 537 research universities without a medical school, NDSU ranks 41st in research expenditures for FY2007. www.ndsu.edu/research
About CSSP
The Council of Scientific Society Presidents (CSSP) is an organization of presidents, presidents-elect, and recent past presidents of about sixty scientific federations and societies whose combined membership numbers well over 1.4 million scientists and science educators. The CSSP provides an opportunity for scientists and science/math educators to convene in a multidisciplinary forum for engaging in lively dialogue with invited speakers from government, academe and industry. Since 1973, CSSP has served as a strong national voice in fostering wise science policy, in support of science and science education, as the premier national science leadership development center, and as a forum for open, substantive exchanges on emerging scientific issues. http://cssp.us
For more information:
Scientists Model the Scaling Laws of Water Uptake by Plant Roots
http://www.csrees.usda.gov/newsroom/impact/2008/nri/10161_plant_roots.html
Dr. Mario Biondini, North Dakota State University
http://www.ndsu.nodak.edu/instruct/biondini/vita/mebvita.htm
Allometric scaling laws for water uptake by plant roots. Journal of Theoretical Biology 251:35-59.
A three dimensional spatial model for plant competition in a heterogeneous soil environment.

Ecological Modelling 142/3:191-227.

Carol Renner | Newswise Science News
Further information:
http://www.ndsu.edu

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>