Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular technique advances soybean rust resistance research

17.05.2011
A new tool is available to select for soybean rust resistance in breeding populations, said Glen Hartman, University of Illinois professor of crop sciences and USDA-ARS scientist.

Hartman and his team of researchers successfully used quantitative polymerase chain reaction (Q-PCR) assays to assess fungal DNA in soybean leaf tissue to quantify the level of resistance in individual plants with resistance to soybean rust.

"This is not a new technique," Hartman said. "But it is a new tool for use in soybean rust resistance breeding, which has typically used phenotyping or visual assessment to measure resistance. We discovered that we can perform more precise and quicker assessments using this molecular technique."

Visual assessment is subject to interpretation and is not an exact science, Hartman said. However, Q-PCR allows for exact enumeration of fungal DNA in the tissue. This is particularly helpful when plants show similar visual symptoms, but colonization levels vary based on fungal DNA levels.

... more about:
»DNA »Hartman »Molecular Target »Q-PCR »gray area »soybean

"The eye can easily tell us if it's a plus or minus for qualitative resistance, but Q-PCR tells us the quantitative resistance or the gray that lies between the plus and minus," Hartman added.

Often qualitative resistance doesn't last as long as quantitative resistance because it involves a single gene. Pathogens can overcome a single gene more easily, putting soybean breeders right back to where they started with a susceptible reaction, he said.

"In quantitative resistance where multiple genes are working together to form resistance, breeders have to distinguish the gray area between susceptible and resistant," Hartman said. "It takes a lot to do that visually with your eye. You can look at samples under a microscope and take multiple measurements But, it's hard and time consuming, particularly when you are working with breeding populations and hundreds of samples."

Hartman said this technique will be useful for plant breeders trying to breed soybeans for resistance to soybean rust.

"We believe Q-PCR will save time and be more precise," he said. "The precision part is very important. The more precise you can be, knowing exactly what the line is reacting to, will lead to more precise mapping of the quantitative resistance genes."

The mapping of this particular quantitative resistance is very important to breeders selecting for rust resistance, Hartman said.

"It's a numbers game," he said. "In developing soybean cultivars, a large number of lines need to be evaluated so many inferior lines have to be discarded. In terms of breeding for soybean rust resistance, this technique can help determine which lines are more resistant to rust when it comes to the gray areas or quantitative resistance."

This research, "Comparisons of Visual Rust Assessments and DNA Levels of Phakopsora pachyrhizi in Soybean Genotypes Varying in Rust Resistance," was published in the April 2011 issue of Plant Disease. Other researchers include Chandra Paul and Curt Hill of the U of I Department of Crop Sciences. This research was supported by the United Soybean Board and the Soybean Diseases Biotechnology Center at the U of I.

Jennifer Shike | EurekAlert!
Further information:
http://www.illinois.edu

Further reports about: DNA Hartman Molecular Target Q-PCR gray area soybean

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>